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Abstract. The oxidative potential (OP) of particulate matter is a key driver of PM1o-induced adverse health effects, triggering
oxidative stress and inflammatory responses that increase respiratory and cardiovascular disease risks. To evaluate PMio and
its OP characteristics across China, samples were collected from twelve representative monitoring stations from June 2022 to
May 2023. A deep learning model combining Convolutional Neural Networks and Long Short-Term Memory networks (CNN-
LSTM) was employed to reconstruct anomalous PM1o data, achieving R? values of 0.967 and 0.884 for training and test sets,
respectively. Significant spatial variations in PM1o were observed, with highest concentrations in the northwestern regions
(Xi'an: 98.20 £52.92 pg-m=3, Dunhuang: 90.36 +54.72 ug-m?), the lowest in the northeast (Longfengshan: 40.04 +24.04
ug-m3, Dalian: 40.35 +15.66 ug':m), and elevated levels in suburban areas (average: 85.43 £46.69 pg-m™). Urban sites
showed the highest OP values, with significantly higher PM1g concentrations in northern regions compared to southern ones
(p<0.05). Most sites exhibited peak PMio and OP levels in winter and lowest in summer. Source apportionment using Positive
Matrix Factorization (PMF) revealed dust (13.2-27.4%), biomass burning (9.5-39.3%), traffic (16.6-21.4%), and agricultural
activities (13-22%) as main contributors to PMy. PMF analysis identified traffic as the primary OP contributor (24-48%)
across sites, with regional variations in biomass burning (57% in Nanning), agricultural activities (37% in Zhengzhou), and
dust (22-23% in Gucheng and Longfengshan). These findings highlight the need to control traffic emissions and other major

sources to reduce OP and protect public health.

1 Introduction

Particulate matter (PM) is one of the main pollutants affecting air quality and human health. Among these, PM 1, which refers
to suspended particles with an aerodynamic diameter of 10 um or less, has received considerable attention due to its complex
sources, extensive environmental and health effects. The sources of PMj, are both complex and diverse, including

anthropogenic activities such as fossil fuel combustion, industrial production, traffic emissions and dust, as well as natural
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sources such as dust storms and volcanic eruptions (Xue et al., 2010). Due to its small particle size, PM1o can remain suspended
in the atmosphere for extended periods of time, significantly affecting atmospheric visibility while potentially exerting
profound effects on regional and global climate change through both direct and indirect mechanisms (Shao et al., 2000). More
critically, PM1o poses a serious threat to human health. Upon entering the human body via the respiratory system, it can be
deposited in the airways and lungs, triggering respiratory diseases such as asthma, chronic obstructive pulmonary disease
(COPD) and even lung cancer (Cao et al., 2016). Furthermore, PM;o can penetrate the alveolar barrier and enter the circulatory
system, inducing systemic diseases such as cardiovascular disease and diabetes (Huang, 2023).

In the context of accelerating global industrialization and urbanization, PMyo pollution has emerged as a critical environmental
concern. Research conducted by the World Health Organization (WHO) indicates that air pollution is responsible for millions
of premature deaths worldwide each year, with PM1o being a major contributor (Cohen et al., 2005). The mechanisms by which
PMy, affects human health are diverse and complex, one of the primary mechanisms being its ability to induce excessive
production of reactive oxygen species (ROS), subsequently triggering oxidative stress (OS) effects. Components within PM 1o,
such as transition metals and polycyclic aromatic hydrocarbons (PAHS), can directly or indirectly promote ROS generation,
leading to cell membrane lipid peroxidation, protein denaturation, and DNA damage (Chirino et al., 2010). Furthermore, ROS
can activate inflammatory signaling pathways, including nuclear factor kB (NF-«xB), which amplify inflammatory responses
and further leading to cellular dysfunction and tissue damage(Wang et al., 2017). This interplay between oxidative stress and
inflammatory responses is considered a critical pathophysiological basis for various PMig-induced diseases. Several studies
suggest that OP may be a more accurate indicator of PM health effects than its mass concentration, providing a new perspective
for assessing PM health risks(Gao et al., 2020; Bates et al., 2019) .

The oxidative potential (OP) of particulate matter (PM) serves as a critical indicator for assessing its toxicity and is closely
related to the generation of reactive oxygen species (ROS). Research indicates that the OP of PM is strongly correlated with
its physicochemical properties and sources(He and Zhang, 2023). In particular, PM of smaller size typically exhibits higher
OP, possibly due to its larger specific surface area and enhanced bioavailability (Saffari et al., 2014; Yao et al., 2024). Water-
soluble transition metals (e.g., iron and copper) and organic carbon (e.g., PAHS) in PM are considered to be the primary
chemical components that influence OP. These components can induce ROS generation either by catalyzing Fenton reactions
or by directly participating in redox processes (Saffari et al., 2014; Guo et al., 2020). Sources of OP in PM are varied and
include primarily traffic emissions, fossil fuel combustion, and secondary organic aerosol formation (Bates et al., 2019; Saffari
et al., 2014). Upon entering the human body, PM from these sources can potentially induce oxidative stress, impair cellular
antioxidant defenses, and lead to lipid peroxidation, protein denaturation, and DNA damage, thereby triggering a range of
health problems (Ghio et al., 2012). Significantly, photochemical aging of PM in the atmosphere further enhances its OP,
possibly related to the formation of secondary organic aerosols and changes in oxidation states of metallic components during
the aging process (An et al., 2022). In addition, the oxygen content in the fuel has been shown to be a critical factor affecting
OP, as exemplified by the typically high OP of PM generated from biomass combustion (Hedayat et al., 2016).
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However, an accurate assessment of the health risks associated with PMio requires an accurate analysis of its sources and
chemical compositions. Due to the complex origins of PMj, and the significant temporal variations in its chemical
compositions, traditional source attribution methods often face challenges when processing large-scale, high-dimensional
environmental data. In recent years, with the rapid development of deep learning technology, its application in handling
environmental data anomalies has received increasing attention. Deep learning models, particularly the combination of
Convolutional Neural Networks (CNN) and Long Short-Term Memory networks (LSTM), have demonstrated significant
advantages in handling anomalies within time series data. CNNs effectively extract spatial features, while LSTMs excel at
capturing long-term dependencies in time series (Huang and Kuo, 2018; Li et al., 2020). This hybrid model not only identifies
anomalies, but also improves data completeness and reliability by predicting and replacing anomalous values(Lee et al., 2019;
Qin et al., 2019). Compared with traditional machine learning methods, CNN-LSTM models show superior performance in
several evaluation metrics, such as MAE and RMSE (Huang and Kuo, 2018; Yang et al., 2020a; Li et al., 2020). CNN-LSTM
models retain significant value in processing atmospheric particulate matter data even without time series analysis. Their
spatial feature extraction capabilities effectively identify and correct anomalies caused by instrument malfunction or local
pollution events, thereby improving data quality (Zhang and Zhou, 2023). Through training and learning, CNN-LSTM models
can effectively predict and correct anomalous values, providing a high-quality data foundation for subsequent analysis(Li et
al., 2020; Yang et al., 2020a).

After data pre-processing, the Positive Matrix Factorization (PMF) model was used to analyse PM1o sources in this study. The
PMF model can identify major pollution sources and their contribution rates by decomposing the observation data matrix
without requiring prior information (Paatero and Tapper, 1994). In recent years, PMF models have been extensively applied
in PM1g and PM s source apportionment, often in combination with other techniques such as multiple linear regression (MLR)
(Weber et al., 2018) . Based on the source contribution results from PMF analysis, MLR models can further quantify the
contributions of different sources to the OP of PM, providing crucial evidence to reveal the association between PM sources
and their health effects. Recent studies have innovatively introduced machine learning methods, such as multilayer perceptron
(MLP), to model OP based on source contribution results from PMF analysis, significantly improving model predictive
accuracy and explanatory power (Borlaza et al., 2022).

In this study, we adopted a comprehensive approach to process PMjo data and evaluate its OP. First, we removed anomalies
from PMyo data and used a deep learning model combining CNN and LSTM to predict and replace anomalous values. This
method effectively captures spatial and temporal features in time-series data, thereby improving data completeness and
prediction accuracy. Then, we employed the PMF model for PM1o source apportionment to identify its major sources. Finally,
we used the MLR model to quantitatively evaluate the contribution of different sources to OP. Through this series of methods,

this study aims to reveal the OP characteristics and sources of PMyg in typical regions of China.
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2 Materials and Methods
2.1 Sample Collections

Daliy ambient PM;o samples were collected every three days from June 2022 to May 2023 at the twelve stations of the CMA
Atmosphere Watch Network (CAWNET), with their distribution shown in Figure 1 and detailed information provided in
Table 1. Remote sites were selected in areas far from anthropogenic pollution sources to ensure the representativeness of the
background monitoring data. Rural sites were selected in typical areas, with sampling points located away from local pollution
sources and elevated above the surrounding ground to minimize local disturbances. At urban sites, sampling points were
typically located 50-100 m above the average urban elevation in order to collect mixed aerosol samples rather than aerosols
from single sources. Suburban sites were located in transition zones between urban and rural areas to reflect aerosol
characteristics under different environmental conditions. All aerosol samples were collected using MiniVol™ air samplers
(Airmetrics, Oregon, USA) operating continuously for 24 hours from 9:00 AM to 9:00 AM the following day (Beijing time)
at a flow rate of 5 L mint. Whatman 47 mm quartz fiber filters (QM/A) were used for sampling. To prevent contamination
from affecting the experimental results, all filters were heated at 800<C for 3 hours prior to use to remove potential organic

contaminants.
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Figure 1. Locations of 12 CAWNET stations. The map base is from the Ministry of Natural Resources' Standard Map Service,
review number GS(2019)1822.



115

120

125

130

https://doi.org/10.5194/egusphere-2025-626
Preprint. Discussion started: 20 May 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

Table 1. Information for twelve CAWNET stations.

Station name Province Lat.&Long. Elev.(m) Type
Changde (CHD) Hunan 29°10.2'N, 111°42.6'E 150.6 Rural
Chengdu (CD) Sichuan 30°39'N, 104<2.4'E 587.0 Urban
Dalian (DL) Liaoning 38°54'N, 121°37.8'E 91.5 Urban
Dunhuang (DH) Gansu 40°9'N, 94<40.8'E 1137.5 Suburban
Gucheng (GC) Hebei 39°7.8'N, 115°48' E 15.2 Rural
Jinsha (JS) Hubei 29°37.8'N, 114°12'E 751.4 Remote
Lhasa (LS) Tibet 29°40.2'N, 91°7.8'E 3660.0 Urban
Lin’an(LA) Zhejiang 30°18'N, 119°44'E 138.6 Remote
Longfengshan (LFS)  Heilongjiang 44°=43.8'N, 127°36'E 331.0 Remote
Nanning (NN) Guangxi 22°49.2'N, 108°21' E 159.0 Urban
Xi’an (XA) Shaanxi 34°25.8'N, 108°58.2' E 363.0 Urban
Zhengzhou (Z2) Henan 34°46.8'N, 113°40.8'E 1104 Suburban

2.2 Chemical and OP analysis
2.2.1 Chemical compositions analysis

Quantitative measurements of OC and EC were performed using the DRI Model 2015A thermal/optical carbon analyzer
developed by the Desert Research Institute, USA. After OC and EC analysis, ion chromatography (Dionex 600 series, USA)
was used to analyze and determine various ions, including Na*, NH4*, K* Ca?*, Mg?*, F,, CI-, NOg", and SO4%. This method
has been widely used as a highly efficient and sensitive analytical technique for the determination of water-soluble ions in
PMyo and PM_ 5 (Domingos et al., 2012; Cui et al., 2008; Yan et al., 2006).

2.2.2 Oxidative Potential (OP) analysis

The 2',7"-Dichlorodihydrofluorescein (DCFH) method is widely used for detecting particle-bound ROS, mainly due to its lack
of specificity and selectivity for various ROS species(Antonini et al., 1998; Cohn et al., 2008; Huang et al., 2016). In this study,
the 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) probe method was employed to measure ROS levels induced by
PMyo. First, DCFH-DA (97%, Sigma-Aldrich, USA) was prepared as a 1 mmol mL-1 stock solution using anhydrous ethanol
and mixed with 0.01 mol L' NaOH solution in a 1:4 (v/v) ratio. The mixture was kept at room temperature in the dark for 30
min to ensure complete alkaline hydrolysis of DCFH-DA to DCFH. Phosphate buffer solution (PBS, 0.0067 mol L™, pH 7.2)
was then added to adjust the pH to 7.0-7.4. The hydrolyzed DCFH solution was stored at 4<C in the dark and used within 2
hours. Horseradish peroxidase (HRP) was dissolved in phosphate buffer to prepare a 10 unit mL™ HRP stock solution. It was

mixed with the DCFH solution prior to use to achieve final concentrations of 10 umol L DCFH and 0.5 units mL™? HRP in
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the reaction system. To generate a standard curve, a 1000 pg mL™ H,0; solution was diluted with ultrapure water to generate
H.0, standard solutions at concentrations of 20, 40, 80, 160, 200, 240, 320, 400, and 800 nmol L. In a 96-well plate, 20 pL
standard solution and 60 uL. DCFH-HRP mixture were added, with three replicates for each concentration. After 15 minutes
of dark incubation at 37 <C, fluorescence intensity was measured using a multifunctional microplate reader (SynergyTMH1,
BioTek America) at an excitation wavelength of 485 nm and an emission wavelength of 535 nm. Quantification was done
through converting the sample’s fluorescent intensity to the equivalent quantity of H,O, (nmol H,O, m3). Before sample
analysis, PM1 samples were extracted in phosphate buffer solution by sonication for 30 minutes. After centrifugation, the
supernatant was collected for testing. In the 96-well plate, 20 pL of sample solution and 60 pL of DCFH-HRP mixture were
added, with three replicates per sample. Water blanks, filter blanks, and DCFH-HRP background blanks were included to
eliminate background interference. After 15 minutes of dark incubation at 37 <C, fluorescence intensity was measured and
converted to H,O, equivalent concentrations using the H;O, standard curve to characterize PMg-induced ROS levels.
Throughout the experimental procedure, the microplate reader was preheated for 30 minutes before measurement to ensure a
stable incubation temperature of 37<C. Background fluorescence values were subtracted from each measurement, and the

relative standard deviation (RSD) of the replicates was controlled within 5% to ensure the accuracy and reliability of the data.

2.3 Data analysis
2.3.1 Convolutional Neural Network (CNN)

One-dimensional convolutional neural networks (1D-CNN) have significant theoretical advantages and practical value in
processing time series data. The core mechanism relies on local connectivity and weight sharing, where each neuron is
connected only to a local region of the input data, while the convolution kernel weights are shared across the entire input
sequence. This design significantly reduces the number of model parameters, improving computational efficiency while
effectively mitigating overfitting problems. Moreover, 1D-CNN achieves translational invariance through convolution and
pooling operations, ensuring robustness to input data translations and enabling stable capture of key patterns in time-series
data. Crucially, 1D-CNN possesses automatic feature extraction capabilities, allowing the model to independently learn and
extract multi-level feature representations from raw data through end-to-end training, thus reducing dependence on manual
feature engineering. As illustrated in Figure 2, the input sequence X1~ X undergoes convolution operations to generate feature
mappings y1 ~ Ya, with purple, green, and yellow connections linking the input layer to the convolution layer. Each connection
maintains its distinct weight value, with connections of the same color sharing identical weights. By stacking multiple
convolutional layers, the model progressively learns higher-level feature representations, offering robust expressive

capabilities for time-series data modeling and prediction.
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SEEES

Figure 2. The one-dimensional (1D) convolution operation process.
2.3.2 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks are specialized recurrent neural networks that effectively address the long-term
dependency problems inherent in traditional RNN(Hochreiter and Schmidhuber, 1997). LSTM introduces memory cells and
gating mechanisms that selectively remember or forget information, enabling the capture of long-term dependencies in
sequences (Okut, 2021). The network uses three primary gating mechanisms: the forgetting gate, the input gate, and the output
gate. The operating principle of the LSTM is illustrated in Figure 3, where o represents the sigmoid function as shown in Eq.
(1). Compared to traditional RNNs, LSTM networks exhibit superior handling of the vanishing gradient problem and can learn
dependencies over longer time steps (Sherstinsky, 2020). These capabilities have led to the widespread application of LSTM
in various domains, including time series prediction and natural language processing (Venneral et al., 2021). The specific

mathematical formulations of LSTM are detailed in Egs. (1) - (6):

fi = O'(VVf Jhe—y, xe] + bf) (@Y
ir = o(W;~ [he—q, %] + by) (2)
¢; = tanh(W, - [hy_1, x;] + b.) 3)
€t = fy X Cpoq +ip X & 4)

0r = a(Wp * [he—1, X¢] + bo) (5)
hy = o, X tanh(c;) (6)

Where W, represents the weight matrix of the forget gate, and by denotes its bias term. h,_, is the previous hidden state and
x; is the current input. The sigmoid activation function o controls the proportion of information retention. i, represents the
output of the input gate, while ¢, indicates the candidate memory value. W; and W, represent the weight matrices for the input
gate and candidate memory respectively, while b; and b, denote their corresponding bias terms. c; represents the memory
cell state at the current time step. W, denotes the weight matrix of the output gate, b, represents its bias term, and o, indicates

the output of the output gate.
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Figure 3. The schematic diagram of the Long Short-Term Memory (LSTM).
2.3.3 CNN-LSTM Network Model

Several studies have shown that CNN-LSTM models have excellent performance in PM prediction, with low error rates and
reduced training times (Li et al., 2020; Huang and Kuo, 2018). In this study, PM1o concentration data were preprocessed for
11 chemical components: OM, EC, Na*, NH4*, K* Ca%*, Mg?*, F, CI', NOs", and SO4%. Specifically, if the sum of the chemical
components in a data set exceeded the PM;o mass concentration or fell below 50% of the PM1o mass concentration, the PMig
concentration in that data set was considered anomalous and removed. After screening, the remaining data were retained and
included in the training set. A hybrid model combining Convolutional Neural Networks (CNN) and Long Short-Term Memory
(LSTM) was used to predict PM1o concentrations based on the training set. The model first extracts local features from the
data through two CNN layers: the first CNN layer uses 16 channels and a kernel size of 2, while the second CNN layer uses
32 channels and the same kernel size, capturing local feature patterns through a sliding window with a stride of 1. Each CNN
layer is followed by a ReLU activation function to introduce non-linearity, and a Dropout layer with a probability of 0.2 to
enhance generalization capability. Subsequently, a 2-layer LSTM network (with 64 hidden units) captures long-term
dependencies in the time series, with the LSTM layers also applying the same Dropout mechanism; finally, the prediction
results are output through a fully connected layer. During the training process, Mean Squared Error (MSE) was used as the
loss function, and the Adam optimizer was employed for parameter optimization, with an initial learning rate set to 0.0005.
When training the model, a total of 3000 training epochs were set, while dynamically monitoring the loss value, with early
stopping when the loss value fell below a preset threshold of 0.0007. Upon completion of training, the model was evaluated
on both training and test sets by calculating Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Coefficient

of Determination (R?) to comprehensively evaluate the predictive performance of the model.
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Figure 4. The architecture of the CNN-LSTM in this study.
2.4 Source apportionment
2.4.1 PM mass apportionment: positive matrix factorization (PMF)

In this study, the US Environmental Protection Agency (US-EPA) EPA PMF 5.0 software (US-EPA, 2017) was used to
perform source apportionment of PM1o. Positive matrix factorization (PMF) is a multivariate statistical method based on factor
analysis that has been widely applied in source apportionment studies of atmospheric particulate matter (Paatero and Tapper,
1994). The PMF model identifies pollution sources and their contribution rates by decomposing the observed data matrix into
two non-negative matrices - the factor contribution matrix (G) and the factor profile matrix (F). The mathematical model can
be expressed as:
X=GF+E (7
Where X is the observation data matrix (n>m), G is the factor contribution matrix (n>p), F is the factor profile matrix (p>m),
and E is the residual matrix. The PMF model optimizes the decomposition results by minimizing the objective function Q:
0= zn: i <xij - Zi:l gikfkj) (8)
i=1j=1 Uij
Where x;; is the concentration of chemical component j in sample i, u;; is the corresponding uncertainty, g is the

contribution of factor k in sample i, and fy; is the proportion of chemical component j in factor k. By introducing non-negative
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constraints, the PMF model can more reasonably explain the physical significance of pollution sources (Paatero, 1997). The

uncertainty (Unc) of the sample data is calculated using Egs. (9) and (10):

5
Unc = e MDL(x;; < MDL) 9

Unc = \/(EFU x xi;)° + (0.5 X MDL)?(x;; = MDL) (10)

Where MDL represents the method detection limit, and EF;; denotes the error fraction of component j in sample i. In this study,

the EF values for OP, were set as the standard deviation during analysis (Verma et al., 2015), while the other components

were set at 10%.

3 Results and discussion
3.1 CNN-LSTM prediction results

The CNN-LSTM model includes input data consisting of PM1o concentration measurements and eleven chemical constituents,
including OM (1.4*0C), EC, Na*, NH4*, K* Ca%*, Mg®, F", CI,, NOs", and SO4>. To ensure the integrity of the data quality,
outlier elimination was performed based on the sum of the chemical components. Specifically, data points were classified as
outliers and subsequently removed if the sum of the components exceeded the PM1o concentration or fell below 50% of the
PM31o concentration. After this screening process, 471 datasets were retained for model training and evaluation, with 85%
allocated to the training set and 15% to the test set. In addition, 766 datasets identified as outliers were excluded and subjected
to prediction. Model performance was evaluated independently on both the training and test sets using three metrics: Mean
Absolute Error (MAE), Root Mean Square Error (RMSE), and Coefficient of Determination (R?). These performance metrics
are mathematically expressed in Egs. (11) - (13). In these equations,y; represents the actual value, ¥, denotes the predicted

value, n indicates the sample size, and y represents the mean of the actual values.

n
1
MAE == [y, = 3 (1)
i=1

n
1
RMSE = |~ (7= 9)° (12)
i=1

2ie (i — 7)?
Xini i —y)?
The model was evaluated on both the training and test sets after completion of training, with results presented in Table 2 and

RZ =1- (13)

Figure 5. For the training set, the model achieved a mean absolute error (MAE) of 6.6614 nug 3, a root mean square error
(RMSE) of 8.7162 ng m, and a coefficient of determination (R?) of 0.9670. W When evaluated on the test set, the model
demonstrated an MAE of 12.6705 pg M3, a RMSE of 17.4965 ug M3, and an R? of 0.8840. These performance metrics indicate

10
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that the CNN-LSTM architecture has a robust ability to learn the characteristics of atmospheric particulate matter composition,
effectively capturing the complex relationships between PM1, concentrations and their chemical constituents.
Table 2. CNN-LSTM model prediction accuracy.

Data MAE (pg-m?) RMSE (pg-m?) R?
Train 6.61 8.72 0.9670
Test 12.67 17.50 0.8840

Figure 5 (a) illustrates the temporal evolution of the loss values for training sets. The plots show a progressive decrease in
loss values for training datasets as training progresses, eventually converging below the predetermined threshold of 0.0007.
This convergence pattern indicates satisfactory model training with no apparent overfitting problems. Figure 5 (b) and (c)
show the comparative analysis between predicted and observed values across training and test sets. The results show strong
agreement between model predictions and actual measurements, with particularly high prediction accuracy observed in regions
of lower PMyo concentrations. However, slight deviations occur in regions with higher PM1o concentrations. This reduced
performance at higher concentrations may be due to the limited number of high concentration samples in the dataset, potentially

limiting the ability of the model to accurately fit extreme values (Liang et al., 2020).

0.0200 4 4001

250

(a) e Predicted PM;q (ug'm~3) (b)/o e  Predicted PM;q (ug'm™3) (c)/
0.0175 - 350{ === Perfect Fit o+ === Perfect Fit i
7
—~ / —~
0.0150 @300 e - 20 "
g 4 ° g s
0.0125 & 2501 s & ol
A £} , ,“ S 150 e &
3 0.0100 A S’ 200 4 S 7 »
— =~ %) = i
3 & 3 % 7 o
0.0075 1 5 1501 % 5 100+ s
z z op i
0.0050 & 100 74 [ :g. .
° 50 -
0.0025 1 504
—— /Toss )
00000 T T T T T T T 0 1 T T T T T T T T T T
0 200 400 600 800 1000 1200 0 100 200 300 400 50 100 150 200 250
Epoch Observed PM ¢ (ug-m~3) Observed PM; (ug'm™3)

Figure 5.(a) LOSS trends for the training sets; comparison of predictions and observations for the (b) training and (c) test sets by
the CNN-LSTM mode.

3.2 PM1o mass and chemical composition concentrations
3.2.1 Annual average

The analysis of PM; concentrations across diverse locations in China shows a remarkable spatial variation in the annual mean
concentrations of PMyg and its chemical constituents from June 2022 to May 2023, as shown in Table 3. Significantly elevated
PMy levels were observed at northwestern sites, with Xi'an and Dunhuang recording concentrations of 98.20 pg = and 90.36
ug M3, respectively, while other sites had concentrations ranging from 40 to 80 pg 3. These spatial patterns suggest complex
interactions between natural and anthropogenic factors. The elevated PM1o concentrations observed in Xi‘an, a major industrial

11
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city and densely populated metropolitan area, are primarily due to industrial emissions and substantial high traffic volumes.
Due to located in an arid region, Dunhuang is likely influenced by dust storm events, as evidenced by higher concentrations
of crustal elements such as Ca?* (Yu et al., 2020). While Na* is typically associated with sea salt spray, its presence at inland
sites such as Dunhuang may indicate contributions from crustal material or other local sources(Zhang et al., 2014b).

In contrast, the lowest PM1g concentrations were observed at Longfengshan (LFS) and Dalian (DL) in the northeastern region,
with values of 40.04 pg-m and 40.35 pg-m, respectively. These relatively lower concentrations may be due to relatively less
anthropogenic activities and better air quality in these regions. Longfengshan, located at the interface of agricultural and
forested landscapes, primarily receives PMyo contributions from natural sources, such as soil dust resuspension and biomass
burning reported in previous research (Yu et al., 2012). Meanwhile, Dalian's coastal location likely contributes to its lower
PM1o concentrations. The observed Na* concentration of 2.36 pg m in Dalian may reflect the influence of marine aerosols
(Shi et al., 2022). In addition, air quality in Dalian is likely modulated by meteorological conditions, especially sea breezes,
which facilitate the dispersion and dilution of pollutants, thereby reducing PM1o concentrations(Wang et al., 2002).

In the densely populated regions of Gucheng (GC) and Zhengzhou (ZZ), where anthropogenic pollution sources are abundant,
the annual mean PMio concentrations were 79.18 pug m= and 80.50 ugm=3, respectively. These elevated PMy levels are
strongly correlated with intensive anthropogenic sources in these regions, including industrial activities, traffic emissions, and
construction dust. As major industrial and transportation hubs, Gucheng and Zhengzhou have particularly high concentrations
of organic matter (OM) and elemental carbon (EC), specifically 19.67 pg m™ and 4.89 ug m in Gucheng, 17.35 pg-m= and
4.12 ng M2 in Zhengzhou. Additionally, the concentrations of sulfate (S04%) and nitrate (NO3’) concentrations in Zhengzhou
and Gucheng were measured to be 8.70 pg m=3, 13.71 ug M= and 6.00 pg M3, 10.94 pg M3, respectively. These values, which
are significantly higher than in other regions, indicate particularly active secondary aerosol formation processes in these
areas(Yang et al., 2020b).

In the southwestern region, Chengdu (CD), located in the Sichuan Basin, recorded an annual mean PM1, concentration of
59.56 pg M. This region is characterized by high aerosol optical depth and reduced visibility, attributed to poor dispersion
conditions and significant local industrial emissions (Li et al., 2003; Zhang et al., 2012).

The central Chinese sites of Jinsha (JS), Changde (CHD), and Lin'an (LA) showed relatively lower annual mean concentrations
of PMyowhich are 47.17 ug m3,46.59 pg M=, and 48.16 pg M3, respectively. Despite these lower concentrations, the chemical
composition shows distinct regional characteristics. Ca?* concentrations of 2.48 pug m= and 2.19 pg m= in Jinsha and Lin‘an,
respectively, likely reflect contributions from soil dust resuspension (Shen, 2016). K* concentration of 0.44 pug m observed
in Changde may be related to agricultural activities in the region (Liu et al., 2016).

Lhasa (LS), located in the center of the Tibetan Plateau at an elevation of 3,663 meters, has PM1o concentrations that are
primarily influenced by natural factors due to its relatively sparse population and limited industrial emissions. Nevertheless,
Lhasa maintained an average PM1o concentration of 47.82 ug m, mainly due to extensive dust resuspension from arid and

exposed terrain, coupled with regional dust storm events. The plateau's climatic conditions, characterized by particularly strong
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winds and low humidity, enhance the dispersal of soil dust and maintain relatively high PM1o levels despite the absence of

significant anthropogenic sources.
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305 Figure 6. Stacked representation of annual average PM1o concentrations and chemical composition (pg m=) across Chinese
regions, including unknown components, from June 2022 to May 2023. (n.d.: unknown components)

The annual mean PMyo concentrations for urban, rural, suburban, and remote sites were 59.99 ug-m=, 62.88 ug-m?3, 85.43
ug'm=3, and 45.12 pg-m3, respectively. These data show that urban-rural transition zones had the highest PM;o concentrations,
which may be due to the simultaneous influence of multiple pollution sources from both urban and rural areas, including
310 industrial emissions, traffic pollution, and agricultural activities (Li et al., 2014). In contrast, background sites had the lowest
PMyo concentrations, reflecting minimal anthropogenic influence in these regions, with primary pollution sources consisting

of natural dust resuspension and long-range transported pollutants (Jiao et al., 2021).
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Table 3. Annual average concentrations (g M=) of PMio and its chemical composition in different regions of China
from June 2022 to May 2023.

Station Type PMiw OM EC Na* NH4s K*  Mg* Ca* F Cl-  SO+s# NO7
Chengdu Urban 59.56 17.09 397 218 211 030 023 267 015 058 6.29 9.36
Dalian Urban 4035 935 230 236 074 025 025 189 0.04 069 319 500
Lhasa Urban 4782 1685 416 251 007 032 026 175 005 118 155 1.12
Nanning Urban 5423 1287 350 203 120 037 021 289 007 064 721 5.09
Xi’an Urban 98.20 19.13 487 250 264 076 037 497 015 167 867 1282
Changde Rural 4659 9.05 217 044 276 044 008 102 003 0.27 6.16 6.18
Gucheng Rural 79.18 1967 489 208 178 035 046 401 0.09 121 6.00 1094
Dunhuang Suburban 90.36 2324 478 443 016 036 046 631 006 257 590 229
Zhengzhou Suburban 80.50 17.35 4.12 171 343 045 032 303 021 086 870 1371
Jinsha Remote 4717 1214 207 152 145 040 020 248 008 058 582 6.89
Lin’an Remote 48.16 13.02 292 137 146 034 022 219 004 066 537 742
Longfengshan Remote 40.04 1231 252 121 114 036 015 161 006 050 4.04 425
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3.2.2 Seasonal variation
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Figure 7. Stacked Representation of Monthly averaged PMzo Concentrations and Chemical Composition (ug-m=) across Chinese
Regions, Including Unknown Components from June 2022 to May 2023. (n.d: Unknown Components). The map base is from the
Ministry of Natural Resources' Standard Map Service, review number GS(2019)1822.

Seasonal variations in PMyo concentrations are shown in Figure 7. Overall, the study area shows a significant seasonal
differentiation of PMyo concentrations, characterized by minimum levels in summer (June-August), maximum levels in winter
(December-February), and a secondary peak in spring (March-May). Multiple studies have also identified distinct seasonal
patterns in PM1o concentrations, with minimal concentrations in summer and maximal concentrations in winter(Yang, 2009;
Quetal., 2010; Lietal., 2009). The lower PM1, concentrations observed in summer may be attributed to increased precipitation,
which effectively scavenges atmospheric particulate matter (Yang, 2009). In addition, research has shown significant negative
correlations between PMso concentrations and temperature, as well as positive correlations with atmospheric pressure (Han et
al., 2015; Li et al., 2019). Elevated PMjo concentrations in winter are primarily associated with increased solid fuel
consumption during the heating season (Tsvetanova et al., 2017). Additionally, unfavorable meteorological conditions in
winter, including high atmospheric stability, reduced atmospheric boundary layer height, and frequent temperature inversions,
exacerbate the accumulation of pollutants (Zhao et al., 2014). All six monitoring stations in the study area showed pronounced

concentration peaks during the spring, which can be attributed to several factors. Firstly, the frequent occurrence of dust events
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during spring increases atmospheric particulate matter concentrations. Secondly, weak wind conditions and local circulation
patterns establish local emissions as the primary source of PMg (Park et al., 2019). Moreover, regional transport represents a
significant influencing factor, with studies indicating substantial contributions to PM3o concentrations from dust transport from
northwestern regions and pollutant transport from surrounding urban agglomerations in spring (Ham et al., 2017).

The results indicate significant seasonal variations in monthly mean concentrations of organic matter (OM=1.4>0C) and
elemental carbon (EC) in urban, rural, and urban-rural transition sites. All three functional site types showed the lowest
concentrations in summer and the highest in winter, consistent with previous studies confirming the widespread winter-high
and summer-low seasonal pattern of carbonaceous components in Chinese atmospheric particulates (Cao et al., 2007; Wang
et al., 2016; Zhang et al., 2015). The elevated concentrations of OM and EC in winter correlate primarily with increased fossil
fuel and biomass combustion emissions during the heating season, coupled with unfavorable meteorological dispersion
conditions. Conversely, the decrease concentrations in summer are attributed to increased precipitation, increased mixing layer
height, and reduced stationary source emissions due to higher temperatures. However, background sites showed different
seasonal patterns than urban and peripheral sites, with OM and EC concentration peaks occurring in spring and fall. This
phenomenon may be associated with regional-scale dust transport, biomass burning activities, and increased open-source
emissions, while also reflecting minimal local anthropogenic influence at background sites, better representing regional
background concentration variations.

We observed generally higher concentrations of SO42 and NOj3 in winter compared to lower concentrations in summer. This
seasonal pattern is primarily due to increased SO, and NOx emissions from extensive fossil fuel combustion, especially coal,
during the winter heating season, which provides abundant precursors for the formation of sulfate and nitrate. In addition,
stable atmospheric stratification and frequent temperature inversions in winter inhibit the dispersion of pollutants, leading to
near-surface accumulation of these secondary inorganic ions. Furthermore, the relatively lower temperatures in winter facilitate
the gas-to-particle conversion of gaseous precursors, promoting the partitioning of semi-volatiles such as ammonium sulfate
and ammonium nitrate to the particulate phase. In contrast, higher summer temperatures favor the gaseous state of these semi-
volatile substances, while frequent convection and stronger atmospheric dispersion conditions significantly reduce sulfate and
nitrate concentrations in PMio (Simonich and Hites, 1994). This seasonal pattern is consistent with observations from other
regional studies and reflects the close relationship between secondary inorganic ion formation mechanisms and meteorological
conditions (Liu et al., 2017a; Wang et al., 2023).

3.3 Oxidative potential (OP)

As shown in Figure 8, oxidative potential (OP) measurements conducted at twelve different sampling sites across China from
June 2022 to May 2023 revealed significant temporal and spatial variability in OP,. Further analysis revealed a strong
correlation between OP, and the degree of urbanization at the sampling sites. During the sampling period, the urban site in
Chengdu had significantly higher OP, levels compared to the other sites, while the rural site in Changde had the lowest OP,

levels. However, the study revealed unexpectedly high average OP, levels at the rural site in Gucheng, ranking second highest
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among all sites, which may be closely related to its geographical location. Gucheng located in the Beijing-Tianjin-Hebei region,
which is characterized by high population density and typical pollution concentration, the elevated OP, levels are likely due
to the combined influence of pollutant transport from surrounding urban areas and local emissions (Han et al., 2015). In contrast,
the urban site in Dalian demonstrated relatively low average OP, levels, ranking second lowest. This phenomenon may be
attributed to the coastal location of Dalian, which benefits from strong marine air mass modulation and favorable atmospheric

dispersion conditions(Meng et al., 2019), resulting in comparatively lower OP, levels.
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Figure 8. Seasonal variations of (a) PM1o concentrations (pg-m=) and (b) OPv (nmol H202 m3) across different regions of China.
The map bases are from the Ministry of Natural Resources' Standard Map Service, review number GS(2019)1822.

As shown in Figure 8(a) and (b), sites located in northern Chinese sites exhibited significantly elevated PM3o concentrations
and OP, levels during the autumn and winter seasons. This phenomenon can be attributed to several concurrent factors. Firstly,
the significant increase in coal and biomass combustion emissions (Liu et al., 2017b; Li et al., 2017) directly contributed to
increased PM concentrations. Secondly, unfavorable meteorological conditions (Li et al., 2017), including low wind speeds,
temperature inversions, and reduced atmospheric boundary layer height, significantly inhibited the ability of pollutants to
disperse. Despite lower levels of urbanization in rural areas, PM1o concentrations were comparable to urban areas due to the
widespread use of solid fuels (Li et al., 2014). Figure 8 (b) shows that nine of the twelve sites had lower OP,, values in summer.
This may be due to more frequent rainfall, which reduces PMg concentrations and subsequently leads to lower OPy levels.
However, sites such as Lhasa and Chengdu maintained relatively high OPy levels during the summer. This phenomenon may
be related to the enhanced of photochemical reactions during summer, especially under conditions of high temperature and
strong solar radiation, resulting in a significant increase in secondary organic aerosol (SOA) formation (Zhou et al., 2019;
Saffari et al., 2014). In particular, Lhasa's high-altitude location, characterized by minimal precipitation and intense solar

radiation, further promoted photochemical reactions, resulting in elevated OP,, levels.
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We observed elevated OP, levels at background stations (such as Longfengshan, Jinsha, and Lin'an stations) in spring. This
phenomenon may be attributed to the minimal influence of anthropogenic pollution sources at background stations, which
typically exhibit more homogeneous mixing states and consequently have relatively lower and more stable OPy, levels during
other seasons. However, the frequent occurrence of dust storms and increased temperature inversion events during spring can
lead to elevated particulate matter concentrations. In addition, the potential metal components carried by dust particles and the
formation of secondary aerosols further enhance OP,, levels(Saffari et al., 2014), resulting in significantly elevated OP, levels
during spring.

Table 4. Annual averaged OPy (nmol H202 m™3) for PM1o across different regions of China from June 2022 to May 2023.

OPy

Station Average Median
Chengdu 0.85 0.57
Dalian 0.30 0.14
Lhasa 0.60 0.57
Nanning 0.56 0.50
Xian 0.73 0.74
Changde 0.22 0.21
Gucheng 0.83 0.75
Dunhuang 0.76 0.50
Zhengzhou 0.42 0.40
Jinsha 0.54 0.40
Lin’an 0.46 0.45
Longfengshan 0.57 0.52

As shown in Figure 9(a), OP, concentrations in northern regions exhibited higher levels during the winter, primarily due to
increased pollutant emissions associated with coal-based heating activities. In contrast, southern regions exhibited peak OP,
concentrations in June, possibly due to enhanced photochemical reactions facilitated by stronger solar radiation intensity.
However, a significant decrease was observed in July and August, which may be attributed to the increased frequency of
precipitation events leading to enhanced wet deposition and removal particulate matter. Figure 9 (b) shows that the annual
mean OP, concentrations in northern regions were significantly higher than those in southern regions (p < 0.05). This spatial
variation can be attributed to several factors, including lower precipitation rates, frequent dust weather events, and emissions

of coal combustion charactered in northern regions.
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3.4 Source appointment

3.4.1 Source appointment of PM1o

This study employed the PMF model to conduct a detailed analysis of PM1o sources at sites representing different regional
types. The selected representative sites include the urban site Nanning (NN), background site Longfengshan (LFS), urban-
rural junction site Zhengzhou (ZZ), and rural site Gucheng (GC). Results indicate that PM1o in NN likely originates primarily
from biomass burning, traffic, dust, secondary aerosols, and sea salt emissions. Sources of PMio in LFS may include biomass

burning, traffic, dust, agricultural activities, and secondary aerosols. The PMjo sources in ZZ are more complex, possibly

including coal combustion emissions in addition to the aforementioned sources. PM1o sources in GC are similar to those in ZZ,

likely encompassing biomass burning, traffic, dust, agricultural activity emissions, secondary aerosols, and coal combustion

emissions. Figure 11 summarizes the distribution of PM1o mass concentrations among the major sources at the four sites.
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Figure 11. The contributions of Biomass burning, Traffic, Dust, Secondary aerosol, Sea salt, Agricultural activities, and coal
combustion to the atmospheric concentration of PM1o mass (%) as derived by PMF modelling at NN, LFS, ZZ, and GC.

As a typical urban site, the PMyo source apportionment results at the NN site indicate that biomass burning, dust, and traffic
are likely the main contributors, accounting for 39.3%, 27.4%, and 21.4% of total sources, respectively. As shown in Figure
10, the first factor contained high levels of CI- (76.9%), Mg?* (27.6%), and Na* (14.3%), elements typically associated with
sea salt (Viana et al., 2008), contributing approximately 5% to PM1o. Sea salt as a source of PMyo in Nanning likely enters
urban areas primarily through coastal air mass transport. Nanning is about 110 kilometers from the Beibu Gulf, and when
prevailing southerly winds occur, sea salt aerosols from the South China Sea may migrate to inland cities through atmospheric
circulation. The second factor contained high levels of Na* (66.7%), Ca®**(48.1%) and Mg?* (17.5%), contributing
approximately 26% to PM1o. This likely represents dust sources (Sharma et al., 2016), indicating that human activities such as
urban construction may have some impact on particulate emissions. The third factor had high levels of NH4* (84.2%), SO4*
(45.7%), and NOs™ (44.4%), contributing approximately 6.9% to PM1o, possibly representing secondary aerosols. This suggests
that the process of gaseous precursors (such as SO,, NOy, and VOCSs) in the atmosphere forming secondary particles through

photochemical reactions may have a certain impact on PMio concentrations(Yue et al., 2015). The fourth factor contained high
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levels of Mg?* (54.8%), EC (50.7%) and OC (38.2%), contributing approximately 20.2% to PMio, possibly related to traffic.
EC and OC have long been considered the main tracer elements for traffic emission sources, particularly vehicle exhaust
emissions (Saarikoski et al., 2008; Sowlat et al., 2016; Esmaeilirad et al., 2020). Research has shown that Mg is one of the
elements present in high concentrations in brake pad materials. Mg is typically used as a filler material in brake pads, and
along with Fe, Ba and Cu, serves as a characteristic element of brake wear (Mckenzie et al., 2009). At the NN urban site, which
is heavily influenced by traffic, brake wear is likely the primary source of these elements. The fifth factor had high levels of
K* (74.9%), OC (37.2%), and EC (35.1%), substances typically associated with biomass burning (Stracquadanio et al., 2019).
This factor made a significant contribution to urban PMjo in Nanning, approximately 39.3%, indicating that biomass burning
may be one of the important sources of atmospheric particulate pollution in Nanning. Although the observation point is located
in the urban area of Nanning, which may be at some distance from areas where straw burning occurs, studies have shown that
particulate matter produced by biomass burning may undergo long-distance transport (Uranishi et al., 2019).

The PMy, source apportionment results for LFS indicate that secondary aerosols may be the main contributor, accounting for
36.2% of total sources. Source analysis identified five potential major factors: In the first factor, NH4* (71.0%), Mg?* (26.5%),
and NOs (18.0%) were present in high concentrations. NH4s* and NOs™ are the main nitrogen components in agricultural
fertilizers (Hawkesford and Griffiths, 2019), while Mg?* is commonly added to fertilizers as a supplementary element (Lu et
al., 2022). This factor may be related to agricultural activities, particularly fertilizer application processes. The second factor
contained high levels of Na* (74.6%), Mg?* (46.2%), and Ca?* (50.8%), elements typically associated with dust sources(Zhang
et al., 2014a; Sharma et al., 2016), contributing approximately 16.9% to PMso. The third factor had high levels of EC (74.0%)
and OC (38.3%), components typically associated with traffic (Esmaeilirad et al., 2020), contributing approximately 17.6%.
The fourth factor contained high levels of Cl- (79.2%), Mg?* (22.7%), OC (22.5%), and K* (15.2%), among them, K* and CI-
have been identified as reliable indicators of biomass burning (Saggu and Mittal, 2020), contributing approximately 13% to
PMo. The fifth factor had high levels of SO4> (70.7%) and NOs (71.9%), with NH4* (27.3%) also making a considerable
contribution, these components are typically associated with secondary aerosol formation processes (Yue et al., 2015).

ZZ is located in a suburban area, and the diversity of its PMig sources may reflect the complex environmental characteristics
of this region. Source apportionment results suggest that there may be six major pollution sources in this area, with their
respective contribution proportions as follows: The first factor had high levels of K* (21.7%) and ClI- (83.9%), possibly
indicating the influence of biomass burning (Saggu and Mittal, 2020), with a contribution proportion of approximately 9.5%.
The second factor contained high levels of Na* (77.6%), Mg?* (35.3%), and Ca?* (43.2%), elements typically associated with
dust sources(Sharma et al., 2016), contributing approximately 13.2% to PMyo. In the third factor, Mg?* (42.1%) and SO4*-
(46.9%) had relatively high concentrations. Since SO, primarily originates from fuel combustion (Schwartz, 1993), combined
with regional characteristics, this factor is associated with coal combustion emissions, contributing approximately 15.5% to
PMso. This coal combustion emission may be somewhat associated with combined heat and power facilities in the surrounding
area. The fourth factor had high levels of EC (49.2%) and OC (22.1%), components typically associated with traffic
(Esmaeilirad et al., 2020), contributing approximately 16.6%. The fifth factor contained high levels of NH4* (80.1%), SO4*
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(33.0%), and NOs™ (52.6%), components typically associated with secondary aerosol formation processes (Yue et al., 2015),
accounting for approximately 23.2% of total PM;o sources. The sixth factor had high levels of K* (60.6%), Ca?* (38.4%), EC
(39.3%), and OC (28.8%); based on comprehensive analysis of these characteristic species, this factor may be related to
agricultural activity emissions (Liu et al., 2023), contributing approximately 22% to PMjj.

The PMyg source apportionment results for the GC show that agricultural activities, traffic emissions, secondary aerosols, and
biomass burning are the main contributors, accounting for 20.5%, 20%, 18.5%, and 18.1% of total sources, respectively. The
factor with K* (42.7%), NO3 (38.4%), and Ca?* (29.2%) as primary characteristic species may be related to agricultural
activities, accounting for 20.5%. This likely reflects the contribution of corn, wheat, and other farming activities around the
site to PMjo, potentially associated with the agricultural-dominant economic structure of this rural area. The factor
characterized by EC (65.1%) and OC (48.1%) likely comes from traffic (Esmaeilirad et al., 2020), representing the second-
largest contributor to PMyo at 20%. This indicates that transportation activities in rural areas may have a significant impact on
PM31o concentrations. The GC is relatively close to National Highway 107, and vehicle emissions from the highway may
contribute to the site's PM1o concentration through transport. Additionally, the increasing vehicle ownership in rural areas may
be a contributing factor. Secondary aerosols, characterized by NH4* (93.0%), SO4> (45.6%), and NOs™ (52.3%), account for
18.5%, indicating the important role of atmospheric secondary transformation processes in PM1o formation in this region(Yue
et al., 2015). The factor characterized by K* (22.3%) and Cl- (76.2%) may be related to biomass burning (Saggu and Mittal,
2020), accounting for 18.1%. This could be associated with activities such as straw burning and residential fuel use, particularly
during crop harvest seasons and winter heating periods when such activities may increase. The factor characterized by Na*
(75.2%) and Ca?* (44.6%) may be related to dust(Sharma et al., 2016), accounting for 14.7%, potentially reflecting the impact
of agricultural cultivation and road dust on PMyo. The factor characterized by Mg?* (43.0%) and SO4> (47.8%) may be related
to coal combustion emissions, accounting for 8.3%. This suggests that industrial activities and residential coal use in rural
areas may have some impact on PMyo, especially during the winter heating season when such emissions may become more

prominent.

3.4.2 Source appointment of OP in PM1o

This study utilized the PMF model to analyze the sources of OPy in PMyg at four sites. As shown in Figure 12, vehicle emissions
are a common significant contributor to OPy across the four sites: NN, LFS, ZZ, and GC, with contribution values of 28%,
48%, 48%, and 24%, respectively. The high contribution from vehicle emissions is mainly attributed to oxidative components
in their particulate emissions, including organic carbon, polycyclic aromatic hydrocarbons, and transition metals. These
components can directly or indirectly induce ROS generation, thereby enhancing the oxidative capacity of particulate matter
(Valavanidis et al., 2008).
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Figure 12. The contributions of Biomass burning, Traffic, Dust, Secondary aerosol, Sea salt, Agricultural activities, and coal
combustion to the atmospheric concentration of OPy (%) as derived by PMF modelling at NN, LFS, ZZ, and GC.

The OP, at the NN mainly originates from biomass burning (57%) and traffic (28%), which is closely related to frequent crop
straw burning activities and urban traffic emissions in the area. Additionally, 9% of the OPy at the NN site comes from dust
and 7% from sea salt sources. The dust contribution in the Nanning area may be associated with local construction activities
and road dust, as minerals and transition metal elements contained in dust can participate in ROS generation processes (Nishita-
Hara et al., 2019; Lodovici and Bigagli, 2011). In addition, although Nanning is located inland, it is influenced by airflow from
the South China Sea, which causes sea salt aerosols to affect the local atmospheric oxidative potential through long-range
transport. Halogen compounds in sea salt (such as CI-, Br’) can promote the generation of free radicals like OH -and CI -through

catalytic reactions, further participating in atmospheric oxidation processes(Cao et al., 2024; Knipping et al., 2000).

The OP,, contribution at the LFS mainly comes from traffic (48%), agricultural activities (29%), and dust (23%). As a site in
the Wuchang area of Heilongjiang province, LFS is surrounded by extensive farmland. Particulate matter emitted from
agricultural activities contains secondary inorganic components such as nitrates and ammonium salts, which can participate in
ROS generation processes through various pathways (Lodovici and Bigagli, 2011). Additionally, the dry climate conditions in
the north lead to significant dust contributions. Transition metals contained in dust can catalyze ROS generation, enhancing

the oxidative capacity of particulate matter (Saffari et al., 2014).
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The OPy at the ZZ mainly originates from traffic (48%), agricultural activities (37%), and coal combustion (16%). As an
important transportation hub city in the central region, Zhengzhou has a large number of vehicles, and exhaust emissions
significantly impact atmospheric oxidative capacity. Meanwhile, the extensive distribution of farmland around Zhengzhou
makes agricultural source emissions an important factor affecting urban atmospheric oxidative capacity. Furthermore, coal
combustion contributes 16% to the OP, at the ZZ site, possibly related to the continuing coal consumption in the area.
Particulate matter emitted during coal combustion processes contains numerous transition metals (such as Fe, Cu, Mn, etc.)
and polycyclic aromatic hydrocarbons, which can promote ROS generation through pathways such as Fenton reactions,
enhancing the oxidative potential of particulate matter (Pardo et al., 2020).

The OP, source composition at the GC is the most complex, exhibiting diverse pollution characteristics. Through detailed
analysis, the OP, sources at this site primarily include six categories: traffic account for 24%, secondary aerosols 24%, dust
22%, coal combustion 13%, biomass burning 10%, and agricultural activities 8%. This complex source composition reflects
the diversity and comprehensive nature of regional pollution. Compared to other sites, the contribution proportion of coal
combustion sources at the GC site is relatively low, which may be due to the energy structure transition or differences in usage
intensity in this region. Notably, the contribution of secondary aerosols at the GC site is significantly higher than at other
monitoring points, accounting for nearly a quarter of the total sources. This characteristic indicates that in the atmospheric
particulate formation process of this region, secondary transformation processes play a crucial role, significantly affecting

atmospheric oxidation capacity and particulate generation mechanisms.

4 Conclusions

This study utilized a comprehensive approach to analyze the characteristics and sources of PMg and its oxidative potential
(OP) at 12 representative sites in China. The main findings are summarized as follows:

1. Performance of CNN-LSTM deep learning model

The CNN-LSTM deep learning model exhibited robust performance in reconstructing missing data for PMig mass
concentrations and outliers in chemical components. The model achieved R? values of 0.967 and 0.884 for the training and
testing sets, respectively. These results highlight the potential of the model to address missing data issues in PM g research.
2. Spatiotemporal variations in PM1 and OP levels

PM3o and OP concentrations showed remarkable spatial and temporal variations:

- PM1o concentrations were relatively higher in Xi‘an and Dunhuang in the northwestern region, while lower in Longfengshan
and Dalian in the northeastern region.

- Suburban sites generally exhibited higher PM1o concentrations compared to other site types.

- OP levels were relatively higher in Chengdu and Gucheng, with urban sites having higher OP, values than other sites.

- Annual average PMjo concentrations in northern regions were typically higher than in southern regions.
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- Seasonally, PMyo and OP levels were higher in winter and lower in summer, suggesting the potential benefits of implementing
targeted control measures during high-risk periods to mitigate adverse health impacts.

3. Source Apportionment Findings

Source apportionment using PMF indicated that dust, biomass burning, traffic emissions, and agricultural activities were likely
the main contributing sources to PM1o mass concentrations at the study sites. Understanding the contributions of these sources
is crucial for developing more effective PM reduction strategies.

4. Oxidative Potential Source Analysis

The OP, source apportionment conducted using PMF indicates that vehicle emissions may be one of the important sources of
OP at the four sites—NN, LFS, ZZ, and GC—accounting for 24-48%. There are significant differences in source profiles
among the sites: NN is dominated by biomass burning (57%) and traffic (28%); LFS is mainly characterized by traffic (48%),
Secondary aerosol (29%), and dust (23%); ZZ is primarily influenced by traffic (48%) and agricultural activities (37%); GC
has the most complex source profile, with comparable contributions from multiple sources including traffic, secondary aerosols,
and dust. The differences between sites suggest that the sources of atmospheric particulate oxidative potential have distinct
regional characteristics. It is recommended to adopt targeted differentiated control strategies, especially strengthening the
regulation of vehicle emissions.

The study results underscore the importance of identifying and quantifying OP sources to assess and mitigate health risks
associated with PM1o exposure. The source apportionment findings suggest that emission reduction measures targeting traffic,
biomass burning, dust, and agricultural activities may help lower OP levels and protect public health. This research employed
deep learning techniques to analyze the spatiotemporal distribution characteristics, source apportionment, and influencing
factors of PMyo and its OP in different typical regions of China from multiple perspectives. The findings provide a scientific
basis for better understanding the causes of PM1o pollution, formulating control strategies, and mitigating health risks. Future
studies should focus on further investigating the identification and health risk assessment of toxic and harmful components in
PMyo, exploring the toxicological mechanisms of OP, and developing integrated indicators that combine chemical components
and toxicity for characterizing and evaluating PM1o pollution.
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