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Abstract. The oxidative potential (OP) of particulate matter is a key driver of PM10-induced adverse health effects, triggering 

oxidative stress and inflammatory responses that increase respiratory and cardiovascular disease risks. To evaluate PM10 and 

its OP characteristics across China, samples were collected from twelve representative monitoring stations from June 2022 to 15 

May 2023. A deep learning model combining Convolutional Neural Networks and Long Short-Term Memory networks (CNN-

LSTM) was employed to reconstruct anomalous PM10 data, achieving R2 values of 0.967 and 0.884 for training and test sets, 

respectively. Significant spatial variations in PM10 were observed, with highest concentrations in the northwestern regions 

(Xi'an: 98.20 ± 52.92 μg·m-3, Dunhuang: 90.36 ± 54.72 μg·m-3), the lowest in the northeast (Longfengshan: 40.04 ± 24.04 

μg·m-3, Dalian: 40.35 ± 15.66 μg·m-3), and elevated levels in suburban areas (average: 85.43 ± 46.69 μg·m-3). Urban sites 20 

showed the highest OP values, with significantly higher PM10 concentrations in northern regions compared to southern ones 

(p<0.05). Most sites exhibited peak PM10 and OP levels in winter and lowest in summer. Source apportionment using Positive 

Matrix Factorization (PMF) revealed dust (13.2-27.4%), biomass burning (9.5-39.3%), traffic (16.6-21.4%), and agricultural 

activities (13-22%) as main contributors to PM10. PMF analysis identified traffic as the primary OP contributor (24-48%) 

across sites, with regional variations in biomass burning (57% in Nanning), agricultural activities (37% in Zhengzhou), and 25 

dust (22-23% in Gucheng and Longfengshan).  These findings highlight the need to control traffic emissions and other major 

sources to reduce OP and protect public health. 

1 Introduction 

Particulate matter (PM) is one of the main pollutants affecting air quality and human health. Among these, PM10, which refers 

to suspended particles with an aerodynamic diameter of 10 μm or less, has received considerable attention due to its complex 30 

sources, extensive environmental and health effects. The sources of PM10 are both complex and diverse, including 

anthropogenic activities such as fossil fuel combustion, industrial production, traffic emissions and dust, as well as natural 
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sources such as dust storms and volcanic eruptions (Xue et al., 2010). Due to its small particle size, PM10 can remain suspended 

in the atmosphere for extended periods of time, significantly affecting atmospheric visibility while potentially exerting 

profound effects on regional and global climate change through both direct and indirect mechanisms (Shao et al., 2000). More 35 

critically, PM10 poses a serious threat to human health. Upon entering the human body via the respiratory system, it can be 

deposited in the airways and lungs, triggering respiratory diseases such as asthma, chronic obstructive pulmonary disease 

(COPD) and even lung cancer (Cao et al., 2016). Furthermore, PM10 can penetrate the alveolar barrier and enter the circulatory 

system, inducing systemic diseases such as cardiovascular disease and diabetes (Huang, 2023). 

In the context of accelerating global industrialization and urbanization, PM10 pollution has emerged as a critical environmental 40 

concern. Research conducted by the World Health Organization (WHO) indicates that air pollution is responsible for millions 

of premature deaths worldwide each year, with PM10 being a major contributor (Cohen et al., 2005). The mechanisms by which 

PM10 affects human health are diverse and complex, one of the primary mechanisms being its ability to induce excessive 

production of reactive oxygen species (ROS), subsequently triggering oxidative stress (OS) effects. Components within PM10, 

such as transition metals and polycyclic aromatic hydrocarbons (PAHs), can directly or indirectly promote ROS generation, 45 

leading to cell membrane lipid peroxidation, protein denaturation, and DNA damage (Chirino et al., 2010). Furthermore, ROS 

can activate inflammatory signaling pathways, including nuclear factor κB (NF-κB), which amplify inflammatory responses 

and further leading to cellular dysfunction and tissue damage(Wang et al., 2017). This interplay between oxidative stress and 

inflammatory responses is considered a critical pathophysiological basis for various PM10-induced diseases. Several studies 

suggest that OP may be a more accurate indicator of PM health effects than its mass concentration, providing a new perspective 50 

for assessing PM health risks(Gao et al., 2020; Bates et al., 2019) . 

The oxidative potential (OP) of particulate matter (PM) serves as a critical indicator for assessing its toxicity and is closely 

related to the generation of reactive oxygen species (ROS). Research indicates that the OP of PM is strongly correlated with 

its physicochemical properties and sources(He and Zhang, 2023). In particular, PM of smaller size typically exhibits higher 

OP, possibly due to its larger specific surface area and enhanced bioavailability (Saffari et al., 2014; Yao et al., 2024). Water-55 

soluble transition metals (e.g., iron and copper) and organic carbon (e.g., PAHs) in PM are considered to be the primary 

chemical components that influence OP. These components can induce ROS generation either by catalyzing Fenton reactions 

or by directly participating in redox processes (Saffari et al., 2014; Guo et al., 2020). Sources of OP in PM are varied and 

include primarily traffic emissions, fossil fuel combustion, and secondary organic aerosol formation (Bates et al., 2019; Saffari 

et al., 2014). Upon entering the human body, PM from these sources can potentially induce oxidative stress, impair cellular 60 

antioxidant defenses, and lead to lipid peroxidation, protein denaturation, and DNA damage, thereby triggering a range of 

health problems (Ghio et al., 2012). Significantly, photochemical aging of PM in the atmosphere further enhances its OP, 

possibly related to the formation of secondary organic aerosols and changes in oxidation states of metallic components during 

the aging process (An et al., 2022). In addition, the oxygen content in the fuel has been shown to be a critical factor affecting 

OP, as exemplified by the typically high OP of PM generated from biomass combustion (Hedayat et al., 2016).  65 
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However, an accurate assessment of the health risks associated with PM10 requires an accurate analysis of its sources and 

chemical compositions. Due to the complex origins of PM10 and the significant temporal variations in its chemical 

compositions, traditional source attribution methods often face challenges when processing large-scale, high-dimensional 

environmental data. In recent years, with the rapid development of deep learning technology, its application in handling 

environmental data anomalies has received increasing attention. Deep learning models, particularly the combination of 70 

Convolutional Neural Networks (CNN) and Long Short-Term Memory networks (LSTM), have demonstrated significant 

advantages in handling anomalies within time series data. CNNs effectively extract spatial features, while LSTMs excel at 

capturing long-term dependencies in time series (Huang and Kuo, 2018; Li et al., 2020). This hybrid model not only identifies 

anomalies, but also improves data completeness and reliability by predicting and replacing anomalous values(Lee et al., 2019; 

Qin et al., 2019). Compared with traditional machine learning methods, CNN-LSTM models show superior performance in 75 

several evaluation metrics, such as MAE and RMSE (Huang and Kuo, 2018; Yang et al., 2020a; Li et al., 2020). CNN-LSTM 

models retain significant value in processing atmospheric particulate matter data even without time series analysis. Their 

spatial feature extraction capabilities effectively identify and correct anomalies caused by instrument malfunction or local 

pollution events, thereby improving data quality (Zhang and Zhou, 2023). Through training and learning, CNN-LSTM models 

can effectively predict and correct anomalous values, providing a high-quality data foundation for subsequent analysis(Li et 80 

al., 2020; Yang et al., 2020a). 

After data pre-processing, the Positive Matrix Factorization (PMF) model was used to analyse PM10 sources in this study. The 

PMF model can identify major pollution sources and their contribution rates by decomposing the observation data matrix 

without requiring prior information (Paatero and Tapper, 1994). In recent years, PMF models have been extensively applied 

in PM10 and PM2.5 source apportionment, often in combination with other techniques such as multiple linear regression (MLR) 85 

(Weber et al., 2018) . Based on the source contribution results from PMF analysis, MLR models can further quantify the 

contributions of different sources to the OP of PM, providing crucial evidence to reveal the association between PM sources 

and their health effects. Recent studies have innovatively introduced machine learning methods, such as multilayer perceptron 

(MLP), to model OP based on source contribution results from PMF analysis, significantly improving model predictive 

accuracy and explanatory power (Borlaza et al., 2022). 90 

In this study, we adopted a comprehensive approach to process PM10 data and evaluate its OP. First, we removed anomalies 

from PM10 data and used a deep learning model combining CNN and LSTM to predict and replace anomalous values. This 

method effectively captures spatial and temporal features in time-series data, thereby improving data completeness and 

prediction accuracy. Then, we employed the PMF model for PM10 source apportionment to identify its major sources. Finally, 

we used the MLR model to quantitatively evaluate the contribution of different sources to OP. Through this series of methods, 95 

this study aims to reveal the OP characteristics and sources of PM10 in typical regions of China. 
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2 Materials and Methods 

2.1 Sample Collections 

Daliy ambient PM10 samples were collected every three days from June 2022 to May 2023 at the twelve stations of the CMA 

Atmosphere Watch Network (CAWNET), with their distribution shown in Figure 1 and detailed information provided in 100 

Table 1. Remote sites were selected in areas far from anthropogenic pollution sources to ensure the representativeness of the 

background monitoring data. Rural sites were selected in typical areas, with sampling points located away from local pollution 

sources and elevated above the surrounding ground to minimize local disturbances. At urban sites, sampling points were 

typically located 50-100 m above the average urban elevation in order to collect mixed aerosol samples rather than aerosols 

from single sources. Suburban sites were located in transition zones between urban and rural areas to reflect aerosol 105 

characteristics under different environmental conditions. All aerosol samples were collected using MiniVolTM air samplers 

(Airmetrics, Oregon, USA) operating continuously for 24 hours from 9:00 AM to 9:00 AM the following day (Beijing time) 

at a flow rate of 5 L·min-1. Whatman 47 mm quartz fiber filters (QM/A) were used for sampling. To prevent contamination 

from affecting the experimental results, all filters were heated at 800°C for 3 hours prior to use to remove potential organic 

contaminants. 110 

 

Figure 1. Locations of 12 CAWNET stations. The map base is from the Ministry of Natural Resources' Standard Map Service, 

review number GS(2019)1822. 
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Table 1. Information for twelve CAWNET stations. 

Station name Province Lat.&Long. Elev.(m) Type 

Changde (CHD) Hunan 29° 10.2' N, 111° 42.6' E 150.6 Rural 

Chengdu (CD) Sichuan 30° 39 'N, 104° 2.4' E 587.0 Urban 

Dalian (DL) Liaoning 38° 54' N, 121° 37.8' E 91.5 Urban 

Dunhuang (DH) Gansu 40° 9' N, 94° 40.8' E 1137.5 Suburban 

Gucheng (GC) Hebei 39° 7.8' N, 115° 48' E 15.2 Rural 

Jinsha (JS) Hubei 29° 37.8' N, 114° 12' E 751.4 Remote 

Lhasa (LS) Tibet 29° 40.2' N, 91° 7.8' E 3660.0 Urban 

Lin’an(LA) Zhejiang 30° 18' N, 119° 44' E 138.6 Remote 

Longfengshan (LFS) Heilongjiang 44° 43.8' N, 127° 36' E 331.0 Remote 

Nanning (NN) Guangxi 22° 49.2' N, 108° 21' E 159.0 Urban 

Xi’an (XA) Shaanxi 34° 25.8' N, 108° 58.2' E 363.0 Urban 

Zhengzhou (ZZ) Henan 34° 46.8' N, 113° 40.8' E 110.4 Suburban 

2.2 Chemical and OP analysis 115 

2.2.1 Chemical compositions analysis 

Quantitative measurements of OC and EC were performed using the DRI Model 2015A thermal/optical carbon analyzer 

developed by the Desert Research Institute, USA. After OC and EC analysis, ion chromatography (Dionex 600 series, USA) 

was used to analyze and determine various ions, including Na+, NH4
+, K+, Ca2+, Mg2+, F-, Cl-, NO3

-, and SO4
2-. This method 

has been widely used as a highly efficient and sensitive analytical technique for the determination of water-soluble ions in 120 

PM10 and PM2.5 (Domingos et al., 2012; Cui et al., 2008; Yan et al., 2006). 

2.2.2 Oxidative Potential (OP) analysis 

The 2',7'-Dichlorodihydrofluorescein (DCFH) method is widely used for detecting particle-bound ROS, mainly due to its lack 

of specificity and selectivity for various ROS species(Antonini et al., 1998; Cohn et al., 2008; Huang et al., 2016). In this study, 

the 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) probe method was employed to measure ROS levels induced by 125 

PM10. First, DCFH-DA (97%, Sigma-Aldrich, USA) was prepared as a 1 mmol mL-1 stock solution using anhydrous ethanol 

and mixed with 0.01 mol L-1 NaOH solution in a 1:4 (v/v) ratio. The mixture was kept at room temperature in the dark for 30 

min to ensure complete alkaline hydrolysis of DCFH-DA to DCFH. Phosphate buffer solution (PBS, 0.0067 mol L-1, pH 7.2) 

was then added to adjust the pH to 7.0-7.4. The hydrolyzed DCFH solution was stored at 4°C in the dark and used within 2 

hours. Horseradish peroxidase (HRP) was dissolved in phosphate buffer to prepare a 10 unit·mL-1 HRP stock solution. It was 130 

mixed with the DCFH solution prior to use to achieve final concentrations of 10 μmol·L-1 DCFH and 0.5 units·mL-1 HRP in 
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the reaction system. To generate a standard curve, a 1000 μg·mL-1 H2O2 solution was diluted with ultrapure water to generate 

H2O2 standard solutions at concentrations of 20, 40, 80, 160, 200, 240, 320, 400, and 800 nmol·L-1. In a 96-well plate, 20 μL 

standard solution and 60 μL DCFH-HRP mixture were added, with three replicates for each concentration. After 15 minutes 

of dark incubation at 37°C, fluorescence intensity was measured using a multifunctional microplate reader (SynergyTMH1, 135 

BioTek America) at an excitation wavelength of 485 nm and an emission wavelength of 535 nm. Quantification was done 

through converting the sample’s fluorescent intensity to the equivalent quantity of H2O2 (nmol H2O2·m-3). Before sample 

analysis, PM10 samples were extracted in phosphate buffer solution by sonication for 30 minutes. After centrifugation, the 

supernatant was collected for testing. In the 96-well plate, 20 μL of sample solution and 60 μL of DCFH-HRP mixture were 

added, with three replicates per sample. Water blanks, filter blanks, and DCFH-HRP background blanks were included to 140 

eliminate background interference. After 15 minutes of dark incubation at 37°C, fluorescence intensity was measured and 

converted to H2O2 equivalent concentrations using the H2O2 standard curve to characterize PM10-induced ROS levels. 

Throughout the experimental procedure, the microplate reader was preheated for 30 minutes before measurement to ensure a 

stable incubation temperature of 37°C. Background fluorescence values were subtracted from each measurement, and the 

relative standard deviation (RSD) of the replicates was controlled within 5% to ensure the accuracy and reliability of the data.  145 

2.3 Data analysis 

2.3.1 Convolutional Neural Network（CNN） 

One-dimensional convolutional neural networks (1D-CNN) have significant theoretical advantages and practical value in 

processing time series data. The core mechanism relies on local connectivity and weight sharing, where each neuron is 

connected only to a local region of the input data, while the convolution kernel weights are shared across the entire input 150 

sequence. This design significantly reduces the number of model parameters, improving computational efficiency while 

effectively mitigating overfitting problems. Moreover, 1D-CNN achieves translational invariance through convolution and 

pooling operations, ensuring robustness to input data translations and enabling stable capture of key patterns in time-series 

data. Crucially, 1D-CNN possesses automatic feature extraction capabilities, allowing the model to independently learn and 

extract multi-level feature representations from raw data through end-to-end training, thus reducing dependence on manual 155 

feature engineering. As illustrated in Figure 2, the input sequence x1~ x6 undergoes convolution operations to generate feature 

mappings y1 ~ y4, with purple, green, and yellow connections linking the input layer to the convolution layer. Each connection 

maintains its distinct weight value, with connections of the same color sharing identical weights. By stacking multiple 

convolutional layers, the model progressively learns higher-level feature representations, offering robust expressive 

capabilities for time-series data modeling and prediction. 160 
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Figure 2. The one-dimensional (1D) convolution operation process. 

2.3.2 Long Short-Term Memory（LSTM） 

Long Short-Term Memory (LSTM) networks are specialized recurrent neural networks that effectively address the long-term 

dependency problems inherent in traditional RNN(Hochreiter and Schmidhuber, 1997). LSTM introduces memory cells and 165 

gating mechanisms that selectively remember or forget information, enabling the capture of long-term dependencies in 

sequences (Okut, 2021). The network uses three primary gating mechanisms: the forgetting gate, the input gate, and the output 

gate. The operating principle of the LSTM is illustrated in Figure 3, where σ represents the sigmoid function as shown in Eq. 

(1). Compared to traditional RNNs, LSTM networks exhibit superior handling of the vanishing gradient problem and can learn 

dependencies over longer time steps (Sherstinsky, 2020). These capabilities have led to the widespread application of LSTM 170 

in various domains, including time series prediction and natural language processing (Vennerød et al., 2021). The specific 

mathematical formulations of LSTM are detailed in Eqs. (1) - (6): 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1) 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2) 

𝑐̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (3) 175 

𝑐𝑡 = 𝑓𝑡 × 𝑐𝑡−1 + 𝑖𝑡 × 𝑐̃𝑡 (4) 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (5) 

ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ(𝑐𝑡) (6) 

Where 𝑊𝑓  represents the weight matrix of the forget gate, and 𝑏𝑓  denotes its bias term. ℎ𝑡−1 is the previous hidden state and 

𝑥𝑡 is the current input. The sigmoid activation function 𝜎 controls the proportion of information retention. 𝑖𝑡 represents the 180 

output of the input gate, while 𝑐̃𝑡 indicates the candidate memory value.  𝑊𝑖 and 𝑊𝑐 represent the weight matrices for the input 

gate and candidate memory respectively, while 𝑏𝑖 and  𝑏𝑐  denote their corresponding bias terms.  𝑐𝑡 represents the memory 

cell state at the current time step. 𝑊𝑜 denotes the weight matrix of the output gate, 𝑏𝑜 represents its bias term, and 𝑜𝑡 indicates 

the output of the output gate. 
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 185 

Figure 3. The schematic diagram of the Long Short-Term Memory (LSTM). 

2.3.3 CNN-LSTM Network Model  

Several studies have shown that CNN-LSTM models have excellent performance in PM prediction, with low error rates and 

reduced training times (Li et al., 2020; Huang and Kuo, 2018). In this study, PM10 concentration data were preprocessed for 

11 chemical components: OM, EC, Na+, NH4
+, K+, Ca2+, Mg2+, F-, Cl-, NO3

-, and SO4
2-. Specifically, if the sum of the chemical 190 

components in a data set exceeded the PM10 mass concentration or fell below 50% of the PM10 mass concentration, the PM10 

concentration in that data set was considered anomalous and removed. After screening, the remaining data were retained and 

included in the training set. A hybrid model combining Convolutional Neural Networks (CNN) and Long Short-Term Memory 

(LSTM) was used to predict PM10 concentrations based on the training set. The model first extracts local features from the 

data through two CNN layers: the first CNN layer uses 16 channels and a kernel size of 2, while the second CNN layer uses 195 

32 channels and the same kernel size, capturing local feature patterns through a sliding window with a stride of 1. Each CNN 

layer is followed by a ReLU activation function to introduce non-linearity, and a Dropout layer with a probability of 0.2 to 

enhance generalization capability. Subsequently, a 2-layer LSTM network (with 64 hidden units) captures long-term 

dependencies in the time series, with the LSTM layers also applying the same Dropout mechanism; finally, the prediction 

results are output through a fully connected layer. During the training process, Mean Squared Error (MSE) was used as the 200 

loss function, and the Adam optimizer was employed for parameter optimization, with an initial learning rate set to 0.0005. 

When training the model, a total of 3000 training epochs were set, while dynamically monitoring the loss value, with early 

stopping when the loss value fell below a preset threshold of 0.0007. Upon completion of training, the model was evaluated 

on both training and test sets by calculating Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Coefficient 

of Determination (R2) to comprehensively evaluate the predictive performance of the model.  205 
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Figure 4. The architecture of the CNN-LSTM in this study. 

2.4 Source apportionment 

2.4.1 PM mass apportionment: positive matrix factorization（PMF） 

In this study, the US Environmental Protection Agency (US-EPA) EPA PMF 5.0 software (US-EPA, 2017) was used to 210 

perform source apportionment of PM10. Positive matrix factorization (PMF) is a multivariate statistical method based on factor 

analysis that has been widely applied in source apportionment studies of atmospheric particulate matter (Paatero and Tapper, 

1994). The PMF model identifies pollution sources and their contribution rates by decomposing the observed data matrix into 

two non-negative matrices - the factor contribution matrix (G) and the factor profile matrix (F). The mathematical model can 

be expressed as: 215 

𝑋 = 𝐺𝐹 + 𝐸 (7) 

Where 𝑋 is the observation data matrix (n×m), 𝐺 is the factor contribution matrix (n×p), 𝐹 is the factor profile matrix (p×m), 

and 𝐸 is the residual matrix. The PMF model optimizes the decomposition results by minimizing the objective function 𝑄: 

𝑄 = ∑ ∑ (
𝑥𝑖𝑗 − ∑ 𝑔𝑖𝑘𝑓𝑘𝑗

𝑝
𝑘=1

𝑢𝑖𝑗

) 

𝑚

𝑗=1

𝑛

𝑖=1

(8) 

Where 𝑥𝑖𝑗  is the concentration of chemical component j in sample i, 𝑢𝑖𝑗  is the corresponding uncertainty, 𝑔𝑖𝑘  is the 220 

contribution of factor k in sample i, and 𝑓𝑘𝑗 is the proportion of chemical component j in factor k. By introducing non-negative 
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constraints, the PMF model can more reasonably explain the physical significance of pollution sources (Paatero, 1997). The 

uncertainty (𝑈𝑛𝑐) of the sample data is calculated using Eqs. (9) and (10): 

𝑈𝑛𝑐 =
5

6
× 𝑀𝐷𝐿(𝑥𝑖𝑗 < 𝑀𝐷𝐿) (9) 

𝑈𝑛𝑐 = √(𝐸𝐹𝑖𝑗 × 𝑥𝑖𝑗)
2

+ (0.5 × 𝑀𝐷𝐿)2(𝑥𝑖𝑗 ≥ 𝑀𝐷𝐿) (10) 225 

Where 𝑀𝐷𝐿 represents the method detection limit, and 𝐸𝐹𝑖𝑗 denotes the error fraction of component j in sample i. In this study, 

the 𝐸𝐹 values for OPv were set as the standard deviation during analysis (Verma et al., 2015), while the other components 

were set at 10%. 

3 Results and discussion 

3.1 CNN-LSTM prediction results 230 

The CNN-LSTM model includes input data consisting of PM10 concentration measurements and eleven chemical constituents, 

including OM (1.4*OC), EC, Na+, NH4
+, K+, Ca2+, Mg2+, F-, Cl-, NO3

-, and SO4
2-. To ensure the integrity of the data quality, 

outlier elimination was performed based on the sum of the chemical components. Specifically, data points were classified as 

outliers and subsequently removed if the sum of the components exceeded the PM10 concentration or fell below 50% of the 

PM10 concentration. After this screening process, 471 datasets were retained for model training and evaluation, with 85% 235 

allocated to the training set and 15% to the test set. In addition, 766 datasets identified as outliers were excluded and subjected 

to prediction. Model performance was evaluated independently on both the training and test sets using three metrics: Mean 

Absolute Error (MAE), Root Mean Square Error (RMSE), and Coefficient of Determination (R2). These performance metrics 

are mathematically expressed in Eqs. (11) - (13). In these equations,𝑦𝑖  represents the actual value, 𝑦𝑖̂ denotes the predicted 

value, n indicates the sample size, and  𝑦 represents the mean of the actual values. 240 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑛

𝑖=1

(11) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
 ∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑛

𝑖=1

(12) 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦)2𝑛
𝑖=1

(13) 

The model was evaluated on both the training and test sets after completion of training, with results presented in Table 2 and 

Figure 5. For the training set, the model achieved a mean absolute error (MAE) of 6.6614 μg·m-3, a root mean square error 245 

(RMSE) of 8.7162 μg·m-3, and a coefficient of determination (R2) of 0.9670. W When evaluated on the test set, the model 

demonstrated an MAE of 12.6705 μg·m-3, a RMSE of 17.4965 μg·m-3, and an R2 of 0.8840. These performance metrics indicate 

https://doi.org/10.5194/egusphere-2025-626
Preprint. Discussion started: 20 May 2025
c© Author(s) 2025. CC BY 4.0 License.



11 

 

that the CNN-LSTM architecture has a robust ability to learn the characteristics of atmospheric particulate matter composition, 

effectively capturing the complex relationships between PM10 concentrations and their chemical constituents. 

Table 2. CNN-LSTM model prediction accuracy. 250 

Data MAE（μg·m-3） RMSE（μg·m-3） R2 

Train 6.61 8.72 0.9670 

Test 12.67 17.50 0.8840 

Figure 5 (a) illustrates the temporal evolution of the loss values for training sets. The plots show a progressive decrease in 

loss values for training datasets as training progresses, eventually converging below the predetermined threshold of 0.0007. 

This convergence pattern indicates satisfactory model training with no apparent overfitting problems. Figure 5 (b) and (c) 

show the comparative analysis between predicted and observed values across training and test sets. The results show strong 

agreement between model predictions and actual measurements, with particularly high prediction accuracy observed in regions 255 

of lower PM10 concentrations. However, slight deviations occur in regions with higher PM10 concentrations. This reduced 

performance at higher concentrations may be due to the limited number of high concentration samples in the dataset, potentially 

limiting the ability of the model to accurately fit extreme values (Liang et al., 2020). 

 

Figure 5.(a) LOSS trends for the training sets; comparison of predictions and observations for the (b) training and (c) test sets by 260 
the CNN-LSTM mode. 

3.2 PM10 mass and chemical composition concentrations  

3.2.1 Annual average 

The analysis of PM10 concentrations across diverse locations in China shows a remarkable spatial variation in the annual mean 

concentrations of PM10 and its chemical constituents from June 2022 to May 2023, as shown in Table 3. Significantly elevated 265 

PM10 levels were observed at northwestern sites, with Xi'an and Dunhuang recording concentrations of 98.20 μg·m-3 and 90.36 

μg·m-3, respectively, while other sites had concentrations ranging from 40 to 80 μg·m-3. These spatial patterns suggest complex 

interactions between natural and anthropogenic factors. The elevated PM10 concentrations observed in Xi'an, a major industrial 
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city and densely populated metropolitan area, are primarily due to industrial emissions and substantial high traffic volumes. 

Due to located in an arid region, Dunhuang is likely influenced by dust storm events, as evidenced by higher concentrations 270 

of crustal elements such as Ca2+ (Yu et al., 2020). While Na+ is typically associated with sea salt spray, its presence at inland 

sites such as Dunhuang may indicate contributions from crustal material or other local sources(Zhang et al., 2014b). 

In contrast, the lowest PM10 concentrations were observed at Longfengshan (LFS) and Dalian (DL) in the northeastern region, 

with values of 40.04 μg·m-3 and 40.35 μg·m-3, respectively. These relatively lower concentrations may be due to relatively less 

anthropogenic activities and better air quality in these regions. Longfengshan, located at the interface of agricultural and 275 

forested landscapes, primarily receives PM10 contributions from natural sources, such as soil dust resuspension and biomass 

burning reported in previous research (Yu et al., 2012). Meanwhile, Dalian's coastal location likely contributes to its lower 

PM10 concentrations. The observed Na+ concentration of 2.36 μg·m-3 in Dalian may reflect the influence of marine aerosols 

(Shi et al., 2022). In addition, air quality in Dalian is likely modulated by meteorological conditions, especially sea breezes, 

which facilitate the dispersion and dilution of pollutants, thereby reducing PM10 concentrations(Wang et al., 2002). 280 

In the densely populated regions of Gucheng (GC) and Zhengzhou (ZZ), where anthropogenic pollution sources are abundant, 

the annual mean PM10 concentrations were 79.18 μg·m-3 and 80.50 μg·m-3, respectively. These elevated PM10 levels are 

strongly correlated with intensive anthropogenic sources in these regions, including industrial activities, traffic emissions, and 

construction dust. As major industrial and transportation hubs, Gucheng and Zhengzhou have particularly high concentrations 

of organic matter (OM) and elemental carbon (EC), specifically 19.67 μg·m-3 and 4.89 μg·m-3 in Gucheng, 17.35 μg-m-3 and 285 

4.12 μg·m-3 in Zhengzhou. Additionally, the concentrations of sulfate (SO4
2-) and nitrate (NO3

-) concentrations in Zhengzhou 

and Gucheng were measured to be 8.70 μg·m-3, 13.71 μg·m-3 and 6.00 μg·m-3, 10.94 μg·m-3, respectively. These values, which 

are significantly higher than in other regions, indicate particularly active secondary aerosol formation processes in these 

areas(Yang et al., 2020b). 

In the southwestern region, Chengdu (CD), located in the Sichuan Basin, recorded an annual mean PM10 concentration of 290 

59.56 μg·m-3. This region is characterized by high aerosol optical depth and reduced visibility, attributed to poor dispersion 

conditions and significant local industrial emissions (Li et al., 2003; Zhang et al., 2012). 

The central Chinese sites of Jinsha (JS), Changde (CHD), and Lin'an (LA) showed relatively lower annual mean concentrations 

of PM10 which are 47.17 μg·m-3, 46.59 μg·m-3, and 48.16 μg·m-3, respectively. Despite these lower concentrations, the chemical 

composition shows distinct regional characteristics. Ca2+ concentrations of 2.48 μg·m-3 and 2.19 μg·m-3 in Jinsha and Lin'an, 295 

respectively, likely reflect contributions from soil dust resuspension (Shen, 2016). K+ concentration of 0.44 μg·m-3 observed 

in Changde may be related to agricultural activities in the region (Liu et al., 2016). 

Lhasa (LS), located in the center of the Tibetan Plateau at an elevation of 3,663 meters, has PM10 concentrations that are 

primarily influenced by natural factors due to its relatively sparse population and limited industrial emissions. Nevertheless, 

Lhasa maintained an average PM10 concentration of 47.82 μg·m-3, mainly due to extensive dust resuspension from arid and 300 

exposed terrain, coupled with regional dust storm events. The plateau's climatic conditions, characterized by particularly strong 
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winds and low humidity, enhance the dispersal of soil dust and maintain relatively high PM10 levels despite the absence of 

significant anthropogenic sources. 

 

Figure 6. Stacked representation of annual average PM10 concentrations and chemical composition（μg m-3） across Chinese 305 
regions, including unknown components, from June 2022 to May 2023. (n.d.: unknown components) 

The annual mean PM10 concentrations for urban, rural, suburban, and remote sites were 59.99 μg·m-3, 62.88 μg·m-3, 85.43 

μg·m-3, and 45.12 μg·m-3, respectively. These data show that urban-rural transition zones had the highest PM10 concentrations, 

which may be due to the simultaneous influence of multiple pollution sources from both urban and rural areas, including 

industrial emissions, traffic pollution, and agricultural activities (Li et al., 2014). In contrast, background sites had the lowest 310 

PM10 concentrations, reflecting minimal anthropogenic influence in these regions, with primary pollution sources consisting 

of natural dust resuspension and long-range transported pollutants (Jiao et al., 2021). 
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Table 3. Annual average concentrations (µg·m-3) of PM10 and its chemical composition in different regions of China 

from June 2022 to May 2023. 315 

Station Type PM10 OM EC Na+ NH4
+ K+ Mg2+ Ca2+ F- Cl- SO4

2- NO3
- 

Chengdu Urban 59.56 17.09 3.97 2.18 2.11 0.30 0.23 2.67 0.15 0.58 6.29 9.36 

Dalian Urban 40.35 9.35 2.30 2.36 0.74 0.25 0.25 1.89 0.04 0.69 3.19 5.00 

Lhasa Urban 47.82 16.85 4.16 2.51 0.07 0.32 0.26 1.75 0.05 1.18 1.55 1.12 

Nanning Urban 54.23 12.87 3.50 2.03 1.20 0.37 0.21 2.89 0.07 0.64 7.21 5.09 

Xi’an Urban 98.20 19.13 4.87 2.50 2.64 0.76 0.37 4.97 0.15 1.67 8.67 12.82 

Changde Rural 46.59 9.05 2.17 0.44 2.76 0.44 0.08 1.02 0.03 0.27 6.16 6.18 

Gucheng Rural 79.18 19.67 4.89 2.08 1.78 0.35 0.46 4.01 0.09 1.21 6.00 10.94 

Dunhuang Suburban 90.36 23.24 4.78 4.43 0.16 0.36 0.46 6.31 0.06 2.57 5.90 2.29 

Zhengzhou Suburban 80.50 17.35 4.12 1.71 3.43 0.45 0.32 3.03 0.21 0.86 8.70 13.71 

Jinsha Remote 47.17 12.14 2.07 1.52 1.45 0.40 0.20 2.48 0.08 0.58 5.82 6.89 

Lin’an Remote 48.16 13.02 2.92 1.37 1.46 0.34 0.22 2.19 0.04 0.66 5.37 7.42 

Longfengshan Remote 40.04 12.31 2.52 1.21 1.14 0.36 0.15 1.61 0.06 0.50 4.04 4.25 
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3.2.2 Seasonal variation 

 

Figure 7. Stacked Representation of Monthly averaged PM10 Concentrations and Chemical Composition（μg·m-3）across Chinese 

Regions, Including Unknown Components from June 2022 to May 2023. (n.d: Unknown Components). The map base is from the 

Ministry of Natural Resources' Standard Map Service, review number GS(2019)1822. 320 

Seasonal variations in PM10 concentrations are shown in Figure 7. Overall, the study area shows a significant seasonal 

differentiation of PM10 concentrations, characterized by minimum levels in summer (June-August), maximum levels in winter 

(December-February), and a secondary peak in spring (March-May). Multiple studies have also identified distinct seasonal 

patterns in PM10 concentrations, with minimal concentrations in summer and maximal concentrations in winter(Yang, 2009; 

Qu et al., 2010; Li et al., 2009). The lower PM10 concentrations observed in summer may be attributed to increased precipitation, 325 

which effectively scavenges atmospheric particulate matter (Yang, 2009). In addition, research has shown significant negative 

correlations between PM10 concentrations and temperature, as well as positive correlations with atmospheric pressure (Han et 

al., 2015; Li et al., 2019). Elevated PM10 concentrations in winter are primarily associated with increased solid fuel 

consumption during the heating season (Tsvetanova et al., 2017). Additionally, unfavorable meteorological conditions in 

winter, including high atmospheric stability, reduced atmospheric boundary layer height, and frequent temperature inversions, 330 

exacerbate the accumulation of pollutants (Zhao et al., 2014). All six monitoring stations in the study area showed pronounced 

concentration peaks during the spring, which can be attributed to several factors. Firstly, the frequent occurrence of dust events 
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during spring increases atmospheric particulate matter concentrations. Secondly, weak wind conditions and local circulation 

patterns establish local emissions as the primary source of PM10 (Park et al., 2019). Moreover, regional transport represents a 

significant influencing factor, with studies indicating substantial contributions to PM10 concentrations from dust transport from 335 

northwestern regions and pollutant transport from surrounding urban agglomerations in spring (Ham et al., 2017). 

The results indicate significant seasonal variations in monthly mean concentrations of organic matter (OM=1.4×OC) and 

elemental carbon (EC) in urban, rural, and urban-rural transition sites. All three functional site types showed the lowest 

concentrations in summer and the highest in winter, consistent with previous studies confirming the widespread winter-high 

and summer-low seasonal pattern of carbonaceous components in Chinese atmospheric particulates (Cao et al., 2007; Wang 340 

et al., 2016; Zhang et al., 2015). The elevated concentrations of OM and EC in winter correlate primarily with increased fossil 

fuel and biomass combustion emissions during the heating season, coupled with unfavorable meteorological dispersion 

conditions. Conversely, the decrease concentrations in summer are attributed to increased precipitation, increased mixing layer 

height, and reduced stationary source emissions due to higher temperatures. However, background sites showed different 

seasonal patterns than urban and peripheral sites, with OM and EC concentration peaks occurring in spring and fall. This 345 

phenomenon may be associated with regional-scale dust transport, biomass burning activities, and increased open-source 

emissions, while also reflecting minimal local anthropogenic influence at background sites, better representing regional 

background concentration variations. 

We observed generally higher concentrations of SO4
2- and NO3

- in winter compared to lower concentrations in summer. This 

seasonal pattern is primarily due to increased SO2 and NOx emissions from extensive fossil fuel combustion, especially coal, 350 

during the winter heating season, which provides abundant precursors for the formation of sulfate and nitrate. In addition, 

stable atmospheric stratification and frequent temperature inversions in winter inhibit the dispersion of pollutants, leading to 

near-surface accumulation of these secondary inorganic ions. Furthermore, the relatively lower temperatures in winter facilitate 

the gas-to-particle conversion of gaseous precursors, promoting the partitioning of semi-volatiles such as ammonium sulfate 

and ammonium nitrate to the particulate phase. In contrast, higher summer temperatures favor the gaseous state of these semi-355 

volatile substances, while frequent convection and stronger atmospheric dispersion conditions significantly reduce sulfate and 

nitrate concentrations in PM10 (Simonich and Hites, 1994). This seasonal pattern is consistent with observations from other 

regional studies and reflects the close relationship between secondary inorganic ion formation mechanisms and meteorological 

conditions (Liu et al., 2017a; Wang et al., 2023). 

3.3 Oxidative potential (OP) 360 

As shown in Figure 8, oxidative potential (OP) measurements conducted at twelve different sampling sites across China from 

June 2022 to May 2023 revealed significant temporal and spatial variability in OPv. Further analysis revealed a strong 

correlation between OPv and the degree of urbanization at the sampling sites. During the sampling period, the urban site in 

Chengdu had significantly higher OPv levels compared to the other sites, while the rural site in Changde had the lowest OPv 

levels. However, the study revealed unexpectedly high average OPv levels at the rural site in Gucheng, ranking second highest 365 
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among all sites, which may be closely related to its geographical location. Gucheng located in the Beijing-Tianjin-Hebei region, 

which is characterized by high population density and typical pollution concentration, the elevated OPv levels are likely due 

to the combined influence of pollutant transport from surrounding urban areas and local emissions (Han et al., 2015). In contrast, 

the urban site in Dalian demonstrated relatively low average OPv levels, ranking second lowest. This phenomenon may be 

attributed to the coastal location of Dalian, which benefits from strong marine air mass modulation and favorable atmospheric 370 

dispersion conditions(Meng et al., 2019), resulting in comparatively lower OPv levels. 

 

Figure 8. Seasonal variations of (a) PM10 concentrations（μg·m-3）and (b) OPv (nmol H2O2·m-3) across different regions of China. 

The map bases are from the Ministry of Natural Resources' Standard Map Service, review number GS(2019)1822. 

As shown in Figure 8(a) and (b), sites located in northern Chinese sites exhibited significantly elevated PM10 concentrations 375 

and OPv levels during the autumn and winter seasons. This phenomenon can be attributed to several concurrent factors. Firstly, 

the significant increase in coal and biomass combustion emissions (Liu et al., 2017b; Li et al., 2017) directly contributed to 

increased PM concentrations. Secondly, unfavorable meteorological conditions (Li et al., 2017), including low wind speeds, 

temperature inversions, and reduced atmospheric boundary layer height, significantly inhibited the ability of pollutants to 

disperse. Despite lower levels of urbanization in rural areas, PM10 concentrations were comparable to urban areas due to the 380 

widespread use of solid fuels (Li et al., 2014). Figure 8 (b) shows that nine of the twelve sites had lower OPv values in summer. 

This may be due to more frequent rainfall, which reduces PM10 concentrations and subsequently leads to lower OPv levels. 

However, sites such as Lhasa and Chengdu maintained relatively high OPv levels during the summer. This phenomenon may 

be related to the enhanced of photochemical reactions during summer, especially under conditions of high temperature and 

strong solar radiation, resulting in a significant increase in secondary organic aerosol (SOA) formation (Zhou et al., 2019; 385 

Saffari et al., 2014). In particular, Lhasa's high-altitude location, characterized by minimal precipitation and intense solar 

radiation, further promoted photochemical reactions, resulting in elevated OPv levels. 
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We observed elevated OPv levels at background stations (such as Longfengshan, Jinsha, and Lin'an stations) in spring. This 

phenomenon may be attributed to the minimal influence of anthropogenic pollution sources at background stations, which 

typically exhibit more homogeneous mixing states and consequently have relatively lower and more stable OPv levels during 390 

other seasons. However, the frequent occurrence of dust storms and increased temperature inversion events during spring can 

lead to elevated particulate matter concentrations. In addition, the potential metal components carried by dust particles and the 

formation of secondary aerosols further enhance OPv levels(Saffari et al., 2014), resulting in significantly elevated OPv levels 

during spring. 

Table 4. Annual averaged OPv (nmol H2O2 m-3) for PM10 across different regions of China from June 2022 to May 2023. 395 

 OPv 

Station Average Median 

Chengdu 0.85 0.57 

Dalian 0.30 0.14 

Lhasa 0.60 0.57 

Nanning 0.56 0.50 

Xi’an 0.73 0.74 

Changde 0.22 0.21 

Gucheng 0.83 0.75 

Dunhuang 0.76 0.50 

Zhengzhou 0.42 0.40 

Jinsha 0.54 0.40 

Lin’an 0.46 0.45 

Longfengshan 0.57 0.52 

As shown in Figure 9(a), OPv concentrations in northern regions exhibited higher levels during the winter, primarily due to 

increased pollutant emissions associated with coal-based heating activities. In contrast, southern regions exhibited peak OPv 

concentrations in June, possibly due to enhanced photochemical reactions facilitated by stronger solar radiation intensity. 

However, a significant decrease was observed in July and August, which may be attributed to the increased frequency of 

precipitation events leading to enhanced wet deposition and removal particulate matter. Figure 9 (b) shows that the annual 400 

mean OPv concentrations in northern regions were significantly higher than those in southern regions (p < 0.05). This spatial 

variation can be attributed to several factors, including lower precipitation rates, frequent dust weather events, and emissions 

of coal combustion charactered in northern regions. 
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Figure 9. Comparison of (a) monthly and (b) annual average OPv between sites in northern and southern China. 405 

3.4 Source appointment 

3.4.1 Source appointment of PM10 

This study employed the PMF model to conduct a detailed analysis of PM10 sources at sites representing different regional 

types. The selected representative sites include the urban site Nanning (NN), background site Longfengshan (LFS), urban-

rural junction site Zhengzhou (ZZ), and rural site Gucheng (GC). Results indicate that PM10 in NN likely originates primarily 410 

from biomass burning, traffic, dust, secondary aerosols, and sea salt emissions. Sources of PM10 in LFS may include biomass 

burning, traffic, dust, agricultural activities, and secondary aerosols. The PM10 sources in ZZ are more complex, possibly 

including coal combustion emissions in addition to the aforementioned sources. PM10 sources in GC are similar to those in ZZ, 

likely encompassing biomass burning, traffic, dust, agricultural activity emissions, secondary aerosols, and coal combustion 

emissions. Figure 11 summarizes the distribution of PM10 mass concentrations among the major sources at the four sites. 415 
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Figure 10. Chemical profiles of the source factors identified at NN, LFS, ZZ and GC. The bars represent the chemical composition 

profiles (left y-axis) and the dots the explained variation values (right y-axis). 
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Figure 11. The contributions of Biomass burning, Traffic, Dust, Secondary aerosol, Sea salt, Agricultural activities, and coal 420 
combustion to the atmospheric concentration of PM10 mass (%) as derived by PMF modelling at NN, LFS, ZZ, and GC. 

As a typical urban site, the PM10 source apportionment results at the NN site indicate that biomass burning, dust, and traffic 

are likely the main contributors, accounting for 39.3%, 27.4%, and 21.4% of total sources, respectively. As shown in Figure 

10, the first factor contained high levels of Cl- (76.9%), Mg2+ (27.6%), and Na+ (14.3%), elements typically associated with 

sea salt (Viana et al., 2008), contributing approximately 5% to PM10. Sea salt as a source of PM10 in Nanning likely enters 425 

urban areas primarily through coastal air mass transport. Nanning is about 110 kilometers from the Beibu Gulf, and when 

prevailing southerly winds occur, sea salt aerosols from the South China Sea may migrate to inland cities through atmospheric 

circulation. The second factor contained high levels of Na+ (66.7%), Ca2+(48.1%) and Mg2+ (17.5%), contributing 

approximately 26% to PM10. This likely represents dust sources (Sharma et al., 2016), indicating that human activities such as 

urban construction may have some impact on particulate emissions. The third factor had high levels of NH4
+ (84.2%), SO4

2- 430 

(45.7%), and NO3
- (44.4%), contributing approximately 6.9% to PM10, possibly representing secondary aerosols. This suggests 

that the process of gaseous precursors (such as SO2, NOx, and VOCs) in the atmosphere forming secondary particles through 

photochemical reactions may have a certain impact on PM10 concentrations(Yue et al., 2015). The fourth factor contained high 
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levels of Mg2+ (54.8%), EC (50.7%) and OC (38.2%), contributing approximately 20.2% to PM10, possibly related to traffic. 

EC and OC have long been considered the main tracer elements for traffic emission sources, particularly vehicle exhaust 435 

emissions (Saarikoski et al., 2008; Sowlat et al., 2016; Esmaeilirad et al., 2020). Research has shown that Mg is one of the 

elements present in high concentrations in brake pad materials. Mg is typically used as a filler material in brake pads, and 

along with Fe, Ba and Cu, serves as a characteristic element of brake wear (Mckenzie et al., 2009). At the NN urban site, which 

is heavily influenced by traffic, brake wear is likely the primary source of these elements. The fifth factor had high levels of 

K+ (74.9%), OC (37.2%), and EC (35.1%), substances typically associated with biomass burning (Stracquadanio et al., 2019). 440 

This factor made a significant contribution to urban PM10 in Nanning, approximately 39.3%, indicating that biomass burning 

may be one of the important sources of atmospheric particulate pollution in Nanning. Although the observation point is located 

in the urban area of Nanning, which may be at some distance from areas where straw burning occurs, studies have shown that 

particulate matter produced by biomass burning may undergo long-distance transport (Uranishi et al., 2019). 

The PM10 source apportionment results for LFS indicate that secondary aerosols may be the main contributor, accounting for 445 

36.2% of total sources. Source analysis identified five potential major factors: In the first factor, NH4
+ (71.0%), Mg2+ (26.5%), 

and NO3
- (18.0%) were present in high concentrations. NH4

+ and NO3
- are the main nitrogen components in agricultural 

fertilizers (Hawkesford and Griffiths, 2019), while Mg2+ is commonly added to fertilizers as a supplementary element (Lu et 

al., 2022). This factor may be related to agricultural activities, particularly fertilizer application processes. The second factor 

contained high levels of Na+ (74.6%), Mg2+ (46.2%), and Ca2+ (50.8%), elements typically associated with dust sources(Zhang 450 

et al., 2014a; Sharma et al., 2016), contributing approximately 16.9% to PM10. The third factor had high levels of EC (74.0%) 

and OC (38.3%), components typically associated with traffic (Esmaeilirad et al., 2020), contributing approximately 17.6%. 

The fourth factor contained high levels of Cl- (79.2%), Mg2+ (22.7%), OC (22.5%), and K+ (15.2%), among them, K+ and Cl-  

have been identified as reliable indicators of biomass burning (Saggu and Mittal, 2020), contributing approximately 13% to 

PM10. The fifth factor had high levels of SO4
2- (70.7%) and NO3

- (71.9%), with NH4
+ (27.3%) also making a considerable 455 

contribution, these components are typically associated with secondary aerosol formation processes (Yue et al., 2015). 

ZZ is located in a suburban area, and the diversity of its PM10 sources may reflect the complex environmental characteristics 

of this region. Source apportionment results suggest that there may be six major pollution sources in this area, with their 

respective contribution proportions as follows: The first factor had high levels of K+ (21.7%) and Cl- (83.9%), possibly 

indicating the influence of biomass burning (Saggu and Mittal, 2020), with a contribution proportion of approximately 9.5%. 460 

The second factor contained high levels of Na+ (77.6%), Mg2+ (35.3%), and Ca2+ (43.2%), elements typically associated with 

dust sources(Sharma et al., 2016), contributing approximately 13.2% to PM10. In the third factor, Mg2+ (42.1%) and SO4
2-- 

(46.9%) had relatively high concentrations. Since SO4
2- primarily originates from fuel combustion (Schwartz, 1993), combined 

with regional characteristics, this factor is associated with coal combustion emissions, contributing approximately 15.5% to 

PM10. This coal combustion emission may be somewhat associated with combined heat and power facilities in the surrounding 465 

area. The fourth factor had high levels of EC (49.2%) and OC (22.1%), components typically associated with traffic 

(Esmaeilirad et al., 2020), contributing approximately 16.6%. The fifth factor contained high levels of NH4
+ (80.1%), SO4

2- 
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(33.0%), and NO3
- (52.6%), components typically associated with secondary aerosol formation processes (Yue et al., 2015), 

accounting for approximately 23.2% of total PM10 sources. The sixth factor had high levels of K+ (60.6%), Ca2+ (38.4%), EC 

(39.3%), and OC (28.8%); based on comprehensive analysis of these characteristic species, this factor may be related to 470 

agricultural activity emissions (Liu et al., 2023), contributing approximately 22% to PM10. 

The PM10 source apportionment results for the GC show that agricultural activities, traffic emissions, secondary aerosols, and 

biomass burning are the main contributors, accounting for 20.5%, 20%, 18.5%, and 18.1% of total sources, respectively. The 

factor with K+ (42.7%), NO3
- (38.4%), and Ca2+ (29.2%) as primary characteristic species may be related to agricultural 

activities, accounting for 20.5%. This likely reflects the contribution of corn, wheat, and other farming activities around the 475 

site to PM10, potentially associated with the agricultural-dominant economic structure of this rural area. The factor 

characterized by EC (65.1%) and OC (48.1%) likely comes from traffic (Esmaeilirad et al., 2020), representing the second-

largest contributor to PM10 at 20%. This indicates that transportation activities in rural areas may have a significant impact on 

PM10 concentrations. The GC is relatively close to National Highway 107, and vehicle emissions from the highway may 

contribute to the site's PM10 concentration through transport. Additionally, the increasing vehicle ownership in rural areas may 480 

be a contributing factor. Secondary aerosols, characterized by NH4
+ (93.0%), SO4

2- (45.6%), and NO3
- (52.3%), account for 

18.5%, indicating the important role of atmospheric secondary transformation processes in PM10 formation in this region(Yue 

et al., 2015). The factor characterized by K+ (22.3%) and Cl- (76.2%) may be related to biomass burning (Saggu and Mittal, 

2020), accounting for 18.1%. This could be associated with activities such as straw burning and residential fuel use, particularly 

during crop harvest seasons and winter heating periods when such activities may increase. The factor characterized by Na+ 485 

(75.2%) and Ca2+ (44.6%) may be related to dust(Sharma et al., 2016), accounting for 14.7%, potentially reflecting the impact 

of agricultural cultivation and road dust on PM10. The factor characterized by Mg2+ (43.0%) and SO4
2- (47.8%) may be related 

to coal combustion emissions, accounting for 8.3%. This suggests that industrial activities and residential coal use in rural 

areas may have some impact on PM10, especially during the winter heating season when such emissions may become more 

prominent. 490 

3.4.2 Source appointment of OP in PM10 

This study utilized the PMF model to analyze the sources of OPv in PM10 at four sites. As shown in Figure 12, vehicle emissions 

are a common significant contributor to OPv across the four sites: NN, LFS, ZZ, and GC, with contribution values of 28%, 

48%, 48%, and 24%, respectively. The high contribution from vehicle emissions is mainly attributed to oxidative components 

in their particulate emissions, including organic carbon, polycyclic aromatic hydrocarbons, and transition metals. These 495 

components can directly or indirectly induce ROS generation, thereby enhancing the oxidative capacity of particulate matter 

(Valavanidis et al., 2008). 
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Figure 12. The contributions of Biomass burning, Traffic, Dust, Secondary aerosol, Sea salt, Agricultural activities, and coal 

combustion to the atmospheric concentration of OPv (%) as derived by PMF modelling at NN, LFS, ZZ, and GC. 500 

The OPv at the NN mainly originates from biomass burning (57%) and traffic (28%), which is closely related to frequent crop 

straw burning activities and urban traffic emissions in the area. Additionally, 9% of the OPv at the NN site comes from dust 

and 7% from sea salt sources. The dust contribution in the Nanning area may be associated with local construction activities 

and road dust, as minerals and transition metal elements contained in dust can participate in ROS generation processes (Nishita-

Hara et al., 2019; Lodovici and Bigagli, 2011). In addition, although Nanning is located inland, it is influenced by airflow from 505 

the South China Sea, which causes sea salt aerosols to affect the local atmospheric oxidative potential through long-range 

transport. Halogen compounds in sea salt (such as Cl-, Br-) can promote the generation of free radicals like OH· and Cl· through 

catalytic reactions, further participating in atmospheric oxidation processes(Cao et al., 2024; Knipping et al., 2000).   

The OPv contribution at the LFS mainly comes from traffic (48%), agricultural activities (29%), and dust (23%). As a site in 

the Wuchang area of Heilongjiang province, LFS is surrounded by extensive farmland. Particulate matter emitted from 510 

agricultural activities contains secondary inorganic components such as nitrates and ammonium salts, which can participate in 

ROS generation processes through various pathways (Lodovici and Bigagli, 2011). Additionally, the dry climate conditions in 

the north lead to significant dust contributions. Transition metals contained in dust can catalyze ROS generation, enhancing 

the oxidative capacity of particulate matter (Saffari et al., 2014). 
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The OPv at the ZZ mainly originates from traffic (48%), agricultural activities (37%), and coal combustion (16%). As an 515 

important transportation hub city in the central region, Zhengzhou has a large number of vehicles, and exhaust emissions 

significantly impact atmospheric oxidative capacity. Meanwhile, the extensive distribution of farmland around Zhengzhou 

makes agricultural source emissions an important factor affecting urban atmospheric oxidative capacity. Furthermore, coal 

combustion contributes 16% to the OPv at the ZZ site, possibly related to the continuing coal consumption in the area. 

Particulate matter emitted during coal combustion processes contains numerous transition metals (such as Fe, Cu, Mn, etc.) 520 

and polycyclic aromatic hydrocarbons, which can promote ROS generation through pathways such as Fenton reactions, 

enhancing the oxidative potential of particulate matter (Pardo et al., 2020). 

The OPv source composition at the GC is the most complex, exhibiting diverse pollution characteristics. Through detailed 

analysis, the OPv sources at this site primarily include six categories: traffic account for 24%, secondary aerosols 24%, dust 

22%, coal combustion 13%, biomass burning 10%, and agricultural activities 8%. This complex source composition reflects 525 

the diversity and comprehensive nature of regional pollution. Compared to other sites, the contribution proportion of coal 

combustion sources at the GC site is relatively low, which may be due to the energy structure transition or differences in usage 

intensity in this region. Notably, the contribution of secondary aerosols at the GC site is significantly higher than at other 

monitoring points, accounting for nearly a quarter of the total sources. This characteristic indicates that in the atmospheric 

particulate formation process of this region, secondary transformation processes play a crucial role, significantly affecting 530 

atmospheric oxidation capacity and particulate generation mechanisms. 

4 Conclusions 

This study utilized a comprehensive approach to analyze the characteristics and sources of PM10 and its oxidative potential 

(OP) at 12 representative sites in China. The main findings are summarized as follows: 

1. Performance of CNN-LSTM deep learning model 535 

The CNN-LSTM deep learning model exhibited robust performance in reconstructing missing data for PM10 mass 

concentrations and outliers in chemical components. The model achieved R2 values of 0.967 and 0.884 for the training and 

testing sets, respectively. These results highlight the potential of the model to address missing data issues in PM10 research. 

2. Spatiotemporal variations in PM10 and OP levels  

PM10 and OP concentrations showed remarkable spatial and temporal variations: 540 

- PM10 concentrations were relatively higher in Xi'an and Dunhuang in the northwestern region, while lower in Longfengshan 

and Dalian in the northeastern region.  

- Suburban sites generally exhibited higher PM10 concentrations compared to other site types. 

- OP levels were relatively higher in Chengdu and Gucheng, with urban sites having higher OPv values than other sites. 

- Annual average PM10 concentrations in northern regions were typically higher than in southern regions.   545 
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- Seasonally, PM10 and OP levels were higher in winter and lower in summer, suggesting the potential benefits of implementing 

targeted control measures during high-risk periods to mitigate adverse health impacts. 

3. Source Apportionment Findings 

Source apportionment using PMF indicated that dust, biomass burning, traffic emissions, and agricultural activities were likely 

the main contributing sources to PM10 mass concentrations at the study sites. Understanding the contributions of these sources 550 

is crucial for developing more effective PM10 reduction strategies. 

4. Oxidative Potential Source Analysis 

The OPv source apportionment conducted using PMF indicates that vehicle emissions may be one of the important sources of 

OP at the four sites—NN, LFS, ZZ, and GC—accounting for 24-48%. There are significant differences in source profiles 

among the sites: NN is dominated by biomass burning (57%) and traffic (28%); LFS is mainly characterized by traffic (48%), 555 

Secondary aerosol (29%), and dust (23%); ZZ is primarily influenced by traffic (48%) and agricultural activities (37%); GC 

has the most complex source profile, with comparable contributions from multiple sources including traffic, secondary aerosols, 

and dust. The differences between sites suggest that the sources of atmospheric particulate oxidative potential have distinct 

regional characteristics. It is recommended to adopt targeted differentiated control strategies, especially strengthening the 

regulation of vehicle emissions.  560 

The study results underscore the importance of identifying and quantifying OP sources to assess and mitigate health risks 

associated with PM10 exposure. The source apportionment findings suggest that emission reduction measures targeting traffic, 

biomass burning, dust, and agricultural activities may help lower OP levels and protect public health. This research employed 

deep learning techniques to analyze the spatiotemporal distribution characteristics, source apportionment, and influencing 

factors of PM10 and its OP in different typical regions of China from multiple perspectives. The findings provide a scientific 565 

basis for better understanding the causes of PM10 pollution, formulating control strategies, and mitigating health risks. Future 

studies should focus on further investigating the identification and health risk assessment of toxic and harmful components in 

PM10, exploring the toxicological mechanisms of OP, and developing integrated indicators that combine chemical components 

and toxicity for characterizing and evaluating PM10 pollution. 
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